VIDENS: Vision-based User Identification from Inertial Sensors

Alejandro Sánchez Guinea, Simon Heinrich, Max Mühlhäuser
{"title":"VIDENS: Vision-based User Identification from Inertial Sensors","authors":"Alejandro Sánchez Guinea, Simon Heinrich, Max Mühlhäuser","doi":"10.1145/3460421.3480426","DOIUrl":null,"url":null,"abstract":"In this paper we propose the VIDENS (vision-based user identification from inertial sensors) approach, which transforms inertial sensors time-series data into images that represent in pixel form patterns found over time, allowing even a simple CNN to outperform complex ad-hoc deep learning models that combine RNNs and CNNs for user identification. Our evaluation shows promising results when comparing our approach to some relevant existing methods.","PeriodicalId":395295,"journal":{"name":"Proceedings of the 2021 ACM International Symposium on Wearable Computers","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460421.3480426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we propose the VIDENS (vision-based user identification from inertial sensors) approach, which transforms inertial sensors time-series data into images that represent in pixel form patterns found over time, allowing even a simple CNN to outperform complex ad-hoc deep learning models that combine RNNs and CNNs for user identification. Our evaluation shows promising results when comparing our approach to some relevant existing methods.
VIDENS:基于惯性传感器的视觉用户识别
在本文中,我们提出了VIDENS(来自惯性传感器的基于视觉的用户识别)方法,该方法将惯性传感器的时间序列数据转换为图像,这些图像以像素形式表示随着时间的推移发现的模式,甚至允许简单的CNN优于将rnn和CNN结合在一起进行用户识别的复杂ad-hoc深度学习模型。将我们的方法与一些相关的现有方法进行比较,我们的评估显示出有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信