Parallel Training of a Back-Propagation Neural Network Using CUDA

Xavier Sierra-Canto, Francisco Madera-Ramirez, Víctor Uc Cetina
{"title":"Parallel Training of a Back-Propagation Neural Network Using CUDA","authors":"Xavier Sierra-Canto, Francisco Madera-Ramirez, Víctor Uc Cetina","doi":"10.1109/ICMLA.2010.52","DOIUrl":null,"url":null,"abstract":"The Artificial Neural Networks (ANN) training represents a time-consuming process in machine learning systems. In this work we provide an implementation of the back-propagation algorithm on CUDA, a parallel computing architecture developed by NVIDIA. Using CUBLAS, a CUDA implementation of the Basic Linear Algebra Subprograms library (BLAS), the process is simplified, however, the use of kernels was necessary since CUBLAS does not have all the required operations. The implementation was tested with two standard benchmark data sets and the results show that the parallel training algorithm runs 63 times faster than its sequential version.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

The Artificial Neural Networks (ANN) training represents a time-consuming process in machine learning systems. In this work we provide an implementation of the back-propagation algorithm on CUDA, a parallel computing architecture developed by NVIDIA. Using CUBLAS, a CUDA implementation of the Basic Linear Algebra Subprograms library (BLAS), the process is simplified, however, the use of kernels was necessary since CUBLAS does not have all the required operations. The implementation was tested with two standard benchmark data sets and the results show that the parallel training algorithm runs 63 times faster than its sequential version.
基于CUDA的反向传播神经网络并行训练
在机器学习系统中,人工神经网络(ANN)的训练是一个耗时的过程。在这项工作中,我们提供了在CUDA上的反向传播算法的实现,CUDA是由NVIDIA开发的并行计算架构。使用CUBLAS(基本线性代数子程序库(BLAS)的CUDA实现),该过程得到了简化,但是,由于CUBLAS不具备所有所需的操作,因此必须使用内核。在两个标准基准数据集上对实现进行了测试,结果表明并行训练算法的运行速度比顺序训练算法快63倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信