Continuous Integration for Machine Learning Experiments Reproducibility: a Practical Study

A. M. Andrade, M. B. Pereira, S. H. S. Silveira, F. I. F. Linhares, A. H. O. Neto, R. M. C. Andrade, I. L. Araújo
{"title":"Continuous Integration for Machine Learning Experiments Reproducibility: a Practical Study","authors":"A. M. Andrade, M. B. Pereira, S. H. S. Silveira, F. I. F. Linhares, A. H. O. Neto, R. M. C. Andrade, I. L. Araújo","doi":"10.5753/ise.2021.17279","DOIUrl":null,"url":null,"abstract":"The development of a Machine Learning (ML) model depends on many variables in its training. Both model architecture-related variables, such as initial weights and hyperparameters, and general variables, like datasets and framework versions, might impact model metrics and experiment reproducibility. An application cannot be trustworthy if it produces good results only in a specific environment. Therefore, in order to avoid reproducibility issues, some good practices need to be adopted. This paper aims to report a practical experience in developing a machine learning application adopting a workflow that assures the reproducibility of the experiments and, consequently, its reliability, improving the team productivity.","PeriodicalId":252817,"journal":{"name":"Anais do I Workshop Brasileiro de Engenharia de Software Inteligente (ISE 2021)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do I Workshop Brasileiro de Engenharia de Software Inteligente (ISE 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ise.2021.17279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of a Machine Learning (ML) model depends on many variables in its training. Both model architecture-related variables, such as initial weights and hyperparameters, and general variables, like datasets and framework versions, might impact model metrics and experiment reproducibility. An application cannot be trustworthy if it produces good results only in a specific environment. Therefore, in order to avoid reproducibility issues, some good practices need to be adopted. This paper aims to report a practical experience in developing a machine learning application adopting a workflow that assures the reproducibility of the experiments and, consequently, its reliability, improving the team productivity.
机器学习实验再现性的持续集成:一个实用研究
机器学习(ML)模型的开发取决于其训练中的许多变量。与模型体系结构相关的变量(如初始权重和超参数)和一般变量(如数据集和框架版本)都可能影响模型度量和实验可再现性。如果应用程序仅在特定环境中产生良好的结果,那么它就不值得信任。因此,为了避免再现性问题,需要采用一些良好的实践。本文旨在报告采用工作流开发机器学习应用程序的实践经验,该工作流确保实验的可重复性,从而提高其可靠性,从而提高团队生产力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信