Rule Refinement for Spoken Language Translation by Retrieving the Missing Translation of Content Words

Linfeng Song, Jun Xie, Xing Wang, Yajuan Lü, Qun Liu
{"title":"Rule Refinement for Spoken Language Translation by Retrieving the Missing Translation of Content Words","authors":"Linfeng Song, Jun Xie, Xing Wang, Yajuan Lü, Qun Liu","doi":"10.1109/IALP.2013.23","DOIUrl":null,"url":null,"abstract":"Spoken language translation usually suffers from the missing translation of content words, failing to generate the appropriate translation. In this paper we propose a novel Mutual Information based method to improve spoken language translation by retrieving the missing translation of content words. We exploit several features that indicate how well the inner content words are translated for each rule to let MT systems select better translation rules. Experimental results show that our method can improve translation performance significantly ranging from 1.95 to 4.47 BLEU points on different test sets.","PeriodicalId":413833,"journal":{"name":"2013 International Conference on Asian Language Processing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2013.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spoken language translation usually suffers from the missing translation of content words, failing to generate the appropriate translation. In this paper we propose a novel Mutual Information based method to improve spoken language translation by retrieving the missing translation of content words. We exploit several features that indicate how well the inner content words are translated for each rule to let MT systems select better translation rules. Experimental results show that our method can improve translation performance significantly ranging from 1.95 to 4.47 BLEU points on different test sets.
基于内容词缺失翻译检索的口语翻译规则优化
口语翻译通常存在实义词翻译缺失的问题,无法生成恰当的译文。本文提出了一种新的基于互信息的方法,通过检索内容词的缺失翻译来改进口语翻译。我们利用了几个特征来表明内部内容词对每个规则的翻译程度,让机器翻译系统选择更好的翻译规则。实验结果表明,在不同的测试集上,我们的方法可以显著提高翻译性能,范围在1.95 ~ 4.47 BLEU点之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信