Identifying Security Bug Reports Based Solely on Report Titles and Noisy Data

Mayana Pereira, Alok Kumar, Scott Cristiansen
{"title":"Identifying Security Bug Reports Based Solely on Report Titles and Noisy Data","authors":"Mayana Pereira, Alok Kumar, Scott Cristiansen","doi":"10.1109/SMARTCOMP.2019.00026","DOIUrl":null,"url":null,"abstract":"Identifying security bug reports (SBRs) is a vital step in the software development life-cycle. In supervised machine learning based approaches, it is usual to assume that entire bug reports are available for training and that their labels are noise free. To the best of our knowledge, this is the first study to show that accurate label prediction is possible for SBRs even when solely the title is available and in the presence of label noise.","PeriodicalId":253364,"journal":{"name":"2019 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP.2019.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Identifying security bug reports (SBRs) is a vital step in the software development life-cycle. In supervised machine learning based approaches, it is usual to assume that entire bug reports are available for training and that their labels are noise free. To the best of our knowledge, this is the first study to show that accurate label prediction is possible for SBRs even when solely the title is available and in the presence of label noise.
仅根据报告标题和噪声数据识别安全漏洞报告
识别安全错误报告(sbr)是软件开发生命周期中至关重要的一步。在基于监督机器学习的方法中,通常假设完整的bug报告可用于训练,并且它们的标签是无噪声的。据我们所知,这是第一个表明即使只有标题可用且存在标签噪声,也可以对sbr进行准确的标签预测的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信