Improving Real-Time Pedestrian Detection Using Adaptive Confidence Thresholding and Inter-Frame Correlation

M. Al-Shatnawi, Vida Movahedi, A. Asif, Aijun An
{"title":"Improving Real-Time Pedestrian Detection Using Adaptive Confidence Thresholding and Inter-Frame Correlation","authors":"M. Al-Shatnawi, Vida Movahedi, A. Asif, Aijun An","doi":"10.1109/MMSP.2018.8547103","DOIUrl":null,"url":null,"abstract":"The pedestrian detection algorithms form a key component in the multiple pedestrian tracking (MPT) systems. Despite efforts to detect a pedestrian accurately, it is still a challenging task. We propose a novel and efficient online method to improve the performance of the multiple person/pedestrian detector by introducing novel post-processing steps. These steps use an adaptive approach to determine both area and confidence score constraints for the output of any given multiple pedestrian detector. In this paper, we focus on pedestrian detection in video surveillance applications that require an automated, accurate and precise pedestrian detection algorithm. We demonstrate that the new steps make the multiple pedestrian detector more accurate, precise and tolerant to false positive detections. This is illustrated by evaluating the performance of the proposed method in test video sequences taken from the Pedestrian Detection Challenge, Multiple Object Tracking Benchmark (MOT Challenge 2017).","PeriodicalId":137522,"journal":{"name":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2018.8547103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The pedestrian detection algorithms form a key component in the multiple pedestrian tracking (MPT) systems. Despite efforts to detect a pedestrian accurately, it is still a challenging task. We propose a novel and efficient online method to improve the performance of the multiple person/pedestrian detector by introducing novel post-processing steps. These steps use an adaptive approach to determine both area and confidence score constraints for the output of any given multiple pedestrian detector. In this paper, we focus on pedestrian detection in video surveillance applications that require an automated, accurate and precise pedestrian detection algorithm. We demonstrate that the new steps make the multiple pedestrian detector more accurate, precise and tolerant to false positive detections. This is illustrated by evaluating the performance of the proposed method in test video sequences taken from the Pedestrian Detection Challenge, Multiple Object Tracking Benchmark (MOT Challenge 2017).
利用自适应置信度阈值和帧间相关性改进实时行人检测
行人检测算法是多行人跟踪系统的关键组成部分。尽管人们在努力准确地检测行人,但这仍然是一项具有挑战性的任务。我们提出了一种新的、有效的在线方法,通过引入新的后处理步骤来提高多人/行人检测器的性能。这些步骤使用自适应方法来确定任何给定的多个行人检测器输出的面积和置信度分数约束。在本文中,我们重点研究了视频监控应用中的行人检测,这些应用需要一种自动化、准确和精确的行人检测算法。我们证明了新的步骤使多重行人检测器更加准确,精确和容忍假阳性检测。通过评估所提出的方法在行人检测挑战,多目标跟踪基准(MOT挑战2017)的测试视频序列中的性能来说明这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信