A comparative study of MFCC-KNN and LPC-KNN for hijaiyyah letters pronounciation classification system

Adiwijaya, Masyithah Nur Aulia, M. S. Mubarok, W. U. Novia, F. Nhita
{"title":"A comparative study of MFCC-KNN and LPC-KNN for hijaiyyah letters pronounciation classification system","authors":"Adiwijaya, Masyithah Nur Aulia, M. S. Mubarok, W. U. Novia, F. Nhita","doi":"10.1109/ICOICT.2017.8074689","DOIUrl":null,"url":null,"abstract":"Reciting Al-Qur'an sometimes becomes hard to do for Indonesian because Al-Qur'an was written in Arabic which is not the native language of Indonesian. The common mistake for Indonesian is pronouncing the Hijaiyah letters. In this paper, we propose to utilize the ability of Speech Recognition to help people learn reciting Al-Qur'an in the right way. This system is built using K-Nearest Neighbor (KNN) Algorithm as the classifier. For the extraction feature, we use Linear Predictive Coding (LPC) and Mel-Frequency Cepstrum Coefficients (MFCC) and compare both. We also compare the result for system with Principal Component Analysis (PCA) and without PCA. The best result when we use LPC is 78,92% and when we use MFCC is 59,87%.","PeriodicalId":244500,"journal":{"name":"2017 5th International Conference on Information and Communication Technology (ICoIC7)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Information and Communication Technology (ICoIC7)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOICT.2017.8074689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Reciting Al-Qur'an sometimes becomes hard to do for Indonesian because Al-Qur'an was written in Arabic which is not the native language of Indonesian. The common mistake for Indonesian is pronouncing the Hijaiyah letters. In this paper, we propose to utilize the ability of Speech Recognition to help people learn reciting Al-Qur'an in the right way. This system is built using K-Nearest Neighbor (KNN) Algorithm as the classifier. For the extraction feature, we use Linear Predictive Coding (LPC) and Mel-Frequency Cepstrum Coefficients (MFCC) and compare both. We also compare the result for system with Principal Component Analysis (PCA) and without PCA. The best result when we use LPC is 78,92% and when we use MFCC is 59,87%.
MFCC-KNN与LPC-KNN在hijaiyyah字母发音分类系统中的比较研究
背诵《古兰经》有时对印尼人来说很困难,因为《古兰经》是用阿拉伯语写成的,而阿拉伯语不是印尼的母语。印尼语的常见错误是发音Hijaiyah字母。在本文中,我们建议利用语音识别的能力来帮助人们正确地学习背诵古兰经。该系统采用k -最近邻算法作为分类器。对于提取特征,我们使用线性预测编码(LPC)和Mel-Frequency倒频谱系数(MFCC),并对两者进行比较。我们还比较了采用主成分分析和不采用主成分分析的结果。使用LPC时的最佳效果为78.92%,使用MFCC时的最佳效果为59.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信