Global robust criteria for stochastic neutral neural networks with uncertainties and unbounded distributed delay

Guoquan Liu, Simon X. Yang
{"title":"Global robust criteria for stochastic neutral neural networks with uncertainties and unbounded distributed delay","authors":"Guoquan Liu, Simon X. Yang","doi":"10.1109/CYBER.2011.6011808","DOIUrl":null,"url":null,"abstract":"The problem of global robust stability analysis is studied for a class of stochastic neutral neural networks with uncertainties and unbounded distributed delay. Novel stability criteria are obtained in terms of linear matrix inequality (LMI) by employing the Lyapunov-Krasovskii functional method and using the free-weighting matrices technique. In addition, two examples are given to show the effectiveness of the obtained conditions.","PeriodicalId":131682,"journal":{"name":"2011 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBER.2011.6011808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of global robust stability analysis is studied for a class of stochastic neutral neural networks with uncertainties and unbounded distributed delay. Novel stability criteria are obtained in terms of linear matrix inequality (LMI) by employing the Lyapunov-Krasovskii functional method and using the free-weighting matrices technique. In addition, two examples are given to show the effectiveness of the obtained conditions.
具有不确定性和无界分布延迟的随机中立神经网络的全局鲁棒准则
研究了一类具有不确定性和无界分布延迟的随机中立型神经网络的全局鲁棒稳定性分析问题。利用Lyapunov-Krasovskii泛函方法和自由加权矩阵技术,得到了新的线性矩阵不等式稳定性判据。最后,通过两个算例验证了所得条件的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信