Convex Optimization and Array Orientation Diversity-Based Sparse Array Beampattern Synthesis

Hui Chen, Q. Wan
{"title":"Convex Optimization and Array Orientation Diversity-Based Sparse Array Beampattern Synthesis","authors":"Hui Chen, Q. Wan","doi":"10.5772/intechopen.88881","DOIUrl":null,"url":null,"abstract":"The sparse array pattern synthesis (APS) has many important implications in some special situations where the weights, size, and cost of antennas are limited. In this chapter, the APS with a minimum number of elements problem is investigated from the perspective of sparseness constrained optimization. Firstly, to reduce the number of antenna elements in the array, the APS problem is formulated as sparseness constrained optimization problem under compressive sensing (CS) framework and solved by using the reweighted L1-norm minimization algorithm. Besides, to address left-right radiation pattern ambiguity problem, the proposed algorithm exploits the array orientation diversity in the sparsity constraint framework. Simulation results demonstrate the proposed method ’ s validity of achieving the desired radiation beampattern with the minimum number of antenna elements.","PeriodicalId":307301,"journal":{"name":"Advances in Array Optimization","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Array Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.88881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The sparse array pattern synthesis (APS) has many important implications in some special situations where the weights, size, and cost of antennas are limited. In this chapter, the APS with a minimum number of elements problem is investigated from the perspective of sparseness constrained optimization. Firstly, to reduce the number of antenna elements in the array, the APS problem is formulated as sparseness constrained optimization problem under compressive sensing (CS) framework and solved by using the reweighted L1-norm minimization algorithm. Besides, to address left-right radiation pattern ambiguity problem, the proposed algorithm exploits the array orientation diversity in the sparsity constraint framework. Simulation results demonstrate the proposed method ’ s validity of achieving the desired radiation beampattern with the minimum number of antenna elements.
基于凸优化和阵列方向分集的稀疏阵列波束图合成
在天线重量、尺寸和成本有限的特殊情况下,稀疏阵列方向图合成(APS)具有许多重要的意义。本章从稀疏约束优化的角度研究最小元素数APS问题。首先,为了减少阵列中天线单元的数量,将APS问题表述为压缩感知(CS)框架下的稀疏约束优化问题,并采用重加权l1范数最小化算法求解。此外,为了解决左右辐射方向图模糊问题,该算法利用了稀疏性约束框架下的阵列方向多样性。仿真结果表明,该方法能够以最少的天线单元数获得期望的辐射波束方向图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信