Lp norm spectral regression for feature extraction in outlier conditions

Weiwei Zhou, Peiyang Li, Xurui Wang, Fali Li, Huan Liu, Rui Zhang, Teng Ma, Tiejun Liu, Daqing Guo, D. Yao, Peng Xu
{"title":"Lp norm spectral regression for feature extraction in outlier conditions","authors":"Weiwei Zhou, Peiyang Li, Xurui Wang, Fali Li, Huan Liu, Rui Zhang, Teng Ma, Tiejun Liu, Daqing Guo, D. Yao, Peng Xu","doi":"10.1109/ICDSP.2015.7251930","DOIUrl":null,"url":null,"abstract":"Spectral regression is a newly proposed method which is widely used in signal processing and feature extraction. However, like most methods based on regression analysis, it is prone to outlier artifacts with large norm. In this paper, a novel regression function for SR is constructed in the Lp (p ≤ 1) norm space with the aim at compressing the outlier effects on pattern recognition. The quantitative evaluation using simulated outliers demonstrates the proposed method can effectively deal with the outliers introduced in the features.","PeriodicalId":216293,"journal":{"name":"2015 IEEE International Conference on Digital Signal Processing (DSP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2015.7251930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Spectral regression is a newly proposed method which is widely used in signal processing and feature extraction. However, like most methods based on regression analysis, it is prone to outlier artifacts with large norm. In this paper, a novel regression function for SR is constructed in the Lp (p ≤ 1) norm space with the aim at compressing the outlier effects on pattern recognition. The quantitative evaluation using simulated outliers demonstrates the proposed method can effectively deal with the outliers introduced in the features.
Lp范数光谱回归在离群条件下的特征提取
谱回归是一种新提出的方法,广泛应用于信号处理和特征提取。然而,像大多数基于回归分析的方法一样,它容易出现较大范数的离群工件。本文在Lp (p≤1)范数空间中构造了一种新的SR回归函数,以压缩异常值对模式识别的影响。通过模拟离群值的定量评价表明,该方法可以有效地处理特征中引入的离群值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信