{"title":"Radio Waveforms Classification via Deep Q Learning Network","authors":"Siqi Lai, Mingliang Tao, Xiang Zhang, Ling Wang","doi":"10.23919/URSIGASS51995.2021.9560242","DOIUrl":null,"url":null,"abstract":"Radio waveforms classification plays a foundation role in cognitive radio, which promises a broad prospect in spectrum monitoring and management. In this paper, a radio waveforms classification via deep Q learning is proposed, in which a deep reinforcement learning agent is trained to classify signal modulation type. Differ from the widely applied deep learning strategy, the proposed method has strong self-learning decision-making ability, which can find the optimal strategy by trial and error. The simulation results show that it can realize classification of radio signal modulation type with high accuracy.","PeriodicalId":152047,"journal":{"name":"2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSIGASS51995.2021.9560242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Radio waveforms classification plays a foundation role in cognitive radio, which promises a broad prospect in spectrum monitoring and management. In this paper, a radio waveforms classification via deep Q learning is proposed, in which a deep reinforcement learning agent is trained to classify signal modulation type. Differ from the widely applied deep learning strategy, the proposed method has strong self-learning decision-making ability, which can find the optimal strategy by trial and error. The simulation results show that it can realize classification of radio signal modulation type with high accuracy.