Radio Waveforms Classification via Deep Q Learning Network

Siqi Lai, Mingliang Tao, Xiang Zhang, Ling Wang
{"title":"Radio Waveforms Classification via Deep Q Learning Network","authors":"Siqi Lai, Mingliang Tao, Xiang Zhang, Ling Wang","doi":"10.23919/URSIGASS51995.2021.9560242","DOIUrl":null,"url":null,"abstract":"Radio waveforms classification plays a foundation role in cognitive radio, which promises a broad prospect in spectrum monitoring and management. In this paper, a radio waveforms classification via deep Q learning is proposed, in which a deep reinforcement learning agent is trained to classify signal modulation type. Differ from the widely applied deep learning strategy, the proposed method has strong self-learning decision-making ability, which can find the optimal strategy by trial and error. The simulation results show that it can realize classification of radio signal modulation type with high accuracy.","PeriodicalId":152047,"journal":{"name":"2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSIGASS51995.2021.9560242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Radio waveforms classification plays a foundation role in cognitive radio, which promises a broad prospect in spectrum monitoring and management. In this paper, a radio waveforms classification via deep Q learning is proposed, in which a deep reinforcement learning agent is trained to classify signal modulation type. Differ from the widely applied deep learning strategy, the proposed method has strong self-learning decision-making ability, which can find the optimal strategy by trial and error. The simulation results show that it can realize classification of radio signal modulation type with high accuracy.
基于深度Q学习网络的无线电波分类
无线电波波形分类是认知无线电的基础,在频谱监测和管理中具有广阔的应用前景。本文提出了一种基于深度Q学习的无线电波分类方法,其中训练深度强化学习智能体对信号调制类型进行分类。与广泛应用的深度学习策略不同,该方法具有较强的自学习决策能力,可以通过试错找到最优策略。仿真结果表明,该方法能较好地实现无线电信号调制类型的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信