A New Social User Anomaly Behavior Detection System Based on Blockchain and Smart Contract

Xingzi Liu, Frank Jiang, Rongbai Zhang
{"title":"A New Social User Anomaly Behavior Detection System Based on Blockchain and Smart Contract","authors":"Xingzi Liu, Frank Jiang, Rongbai Zhang","doi":"10.1109/ICNSC48988.2020.9238118","DOIUrl":null,"url":null,"abstract":"Inspired from the iForest algorithmic scheme, we propose an iForest-based blockchain social media anomaly behavior detection method via the improved tree algorithm, for the purpose of isolating the anomalous behaviors as an outlier. The model is integrated with the smart contract structure of blockchain. In the overall system, the user data is sent to the intelligent contract for a period of time. After the identification of the abnormal behavior of social media users, the abnormal behavior in blockchain is marked and stored in the abnormal chain. To a certain extent, the scheme protects users' privacy, improves the efficiency and accuracy of iForest anomaly detection, and is more suitable for multi-dimensional heterogenous data-centric social media user behavior detection.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Inspired from the iForest algorithmic scheme, we propose an iForest-based blockchain social media anomaly behavior detection method via the improved tree algorithm, for the purpose of isolating the anomalous behaviors as an outlier. The model is integrated with the smart contract structure of blockchain. In the overall system, the user data is sent to the intelligent contract for a period of time. After the identification of the abnormal behavior of social media users, the abnormal behavior in blockchain is marked and stored in the abnormal chain. To a certain extent, the scheme protects users' privacy, improves the efficiency and accuracy of iForest anomaly detection, and is more suitable for multi-dimensional heterogenous data-centric social media user behavior detection.
基于区块链和智能合约的新型社交用户异常行为检测系统
受ifforest算法方案的启发,我们提出了一种基于ifforest的区块链社交媒体异常行为检测方法,通过改进的树算法,将异常行为作为离群值进行隔离。该模型与区块链的智能合约结构集成。在整个系统中,用户数据被发送到智能合约一段时间。在识别出社交媒体用户的异常行为后,将区块链中的异常行为进行标记并存储在异常链中。该方案在一定程度上保护了用户隐私,提高了ifforest异常检测的效率和准确性,更适合于多维异构的以数据为中心的社交媒体用户行为检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信