Online Multiple Object Segmentation in Mask Coefficient Space

Yunmu Huang, Shih-Shinh Huang, Feng-Chia Chang
{"title":"Online Multiple Object Segmentation in Mask Coefficient Space","authors":"Yunmu Huang, Shih-Shinh Huang, Feng-Chia Chang","doi":"10.1109/ISPACS51563.2021.9651078","DOIUrl":null,"url":null,"abstract":"Recently, the exponential increase in video data makes video instance segmentation attracts significant attention in the field of computer vision. In this work, we propose a method for online multiple object segmentation. The proposed method describes each object by the mask coefficients with respect to the generated prototypes. Instead of tracking multiple objects in image/feature space, we address the segmentation and tracking issues directly in the mask coefficient space that is stable and discriminative for temporal matching. In the experiment, we validate the proposed method by using the DAVIS 2019 dataset.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9651078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the exponential increase in video data makes video instance segmentation attracts significant attention in the field of computer vision. In this work, we propose a method for online multiple object segmentation. The proposed method describes each object by the mask coefficients with respect to the generated prototypes. Instead of tracking multiple objects in image/feature space, we address the segmentation and tracking issues directly in the mask coefficient space that is stable and discriminative for temporal matching. In the experiment, we validate the proposed method by using the DAVIS 2019 dataset.
基于掩模系数空间的在线多目标分割
近年来,视频数据呈指数级增长,使得视频实例分割在计算机视觉领域备受关注。在这项工作中,我们提出了一种在线多目标分割方法。该方法通过相对于生成的原型的掩模系数来描述每个对象。我们不是在图像/特征空间中跟踪多个目标,而是直接在稳定且具有时间匹配判别性的掩模系数空间中解决分割和跟踪问题。在实验中,我们使用DAVIS 2019数据集验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信