{"title":"A model for the analysis of the fault injection process","authors":"A. Steininger, H. Schweinzer","doi":"10.1109/FTCS.1995.466984","DOIUrl":null,"url":null,"abstract":"Results of fault injection experiments performed under different conditions can only be related to each other, if their interpretation is based on a thorough understanding of activation and propagation of faults and errors. We analyze these processes by applying a special layer model of a computing system. Our aim is to model the transformation of a fault on a signal line into a system failure as the propagation of erroneous information through multiple layers. Two specific layers that describe the fault activation process have been sufficiently completed and are presented here. A quantification for these is derived and different applications are summarized. Excellent correspondence between analytical results based on modeling and experimental data is found. A prediction of fault activation with high accuracy is possible, as well as a quantitative evaluation of the effect of synchronizing fault injection.<<ETX>>","PeriodicalId":309075,"journal":{"name":"Twenty-Fifth International Symposium on Fault-Tolerant Computing. Digest of Papers","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Twenty-Fifth International Symposium on Fault-Tolerant Computing. Digest of Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTCS.1995.466984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Results of fault injection experiments performed under different conditions can only be related to each other, if their interpretation is based on a thorough understanding of activation and propagation of faults and errors. We analyze these processes by applying a special layer model of a computing system. Our aim is to model the transformation of a fault on a signal line into a system failure as the propagation of erroneous information through multiple layers. Two specific layers that describe the fault activation process have been sufficiently completed and are presented here. A quantification for these is derived and different applications are summarized. Excellent correspondence between analytical results based on modeling and experimental data is found. A prediction of fault activation with high accuracy is possible, as well as a quantitative evaluation of the effect of synchronizing fault injection.<>