{"title":"Millimeter-wave radiation generated via plasma three-wave mixing using high-current density counter-streaming electron beams","authors":"J. Santoru, R. Schumacher","doi":"10.1109/PLASMA.1989.166239","DOIUrl":null,"url":null,"abstract":"Electron-beam-excited, counterpropagating electron plasma wave (EPWs) interact nonlinearly through the plasma three-wave mixing process to generate electromagnetic radiation at twice the plasma frequency. Radiation saturation is not observed up to beam current densities of 2 A/cm/sup 2/, where the peak power is 8 kW. To investigate the saturation mechanism and maximize the radiation generation efficiency, plasma-cathode electron beams, which can provide up to 20 A/cm/sup 2/ at 30 kV, have been installed. The counterpropagating EPW topology required for three-wave mixing was created using a single high-current-density electron beam by means of a backscattering process. When the background plasma was generated by electron-beam-gas impact ionization, the current density threshold for single-beam radiation emission was about 12 A/cm/sup 2/. Scaling experiments have explored the two-beam and single-beam radiation generation processes.<<ETX>>","PeriodicalId":165717,"journal":{"name":"IEEE 1989 International Conference on Plasma Science","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1989 International Conference on Plasma Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.1989.166239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Electron-beam-excited, counterpropagating electron plasma wave (EPWs) interact nonlinearly through the plasma three-wave mixing process to generate electromagnetic radiation at twice the plasma frequency. Radiation saturation is not observed up to beam current densities of 2 A/cm/sup 2/, where the peak power is 8 kW. To investigate the saturation mechanism and maximize the radiation generation efficiency, plasma-cathode electron beams, which can provide up to 20 A/cm/sup 2/ at 30 kV, have been installed. The counterpropagating EPW topology required for three-wave mixing was created using a single high-current-density electron beam by means of a backscattering process. When the background plasma was generated by electron-beam-gas impact ionization, the current density threshold for single-beam radiation emission was about 12 A/cm/sup 2/. Scaling experiments have explored the two-beam and single-beam radiation generation processes.<>