{"title":"Feasibility Assessment of Using the KIP System to Achieve an Energy-Savings Potential for an Electronic Marquee","authors":"Wen-Fu Pan, Shih-Chun Tu, Mei-Ying Chien, Ya-Moo Zhang","doi":"10.21061/jots.v39i2.a.2","DOIUrl":null,"url":null,"abstract":"Conventional electronic marquees continue to consume energy even without a human presence. The purpose of this study is to assess energy-savings potential via the installation of the Kinect and IP Power integrated system (KIP) on an electronic marquee; this system will transfer the consumption data for total electricity to electricity-monitoring software (EZ-HD) using a smart meter (EZ-RE) and the ZigBee USB Dongle. An experiment was conducted at one school entrance for two periods during 10 school months, and it was found that the hourly electricity consumption rate for the original electronic marquee system was 1.25 kWh. After the KIP system was installed, the electronic marquee was activated only during human presence, and the hourly electricity consumption rate was 0.97 kWh, providing an average electricity savings rate of 22.4%. The results suggest that the KIP system can help to reduce the consumption of electricity for electronic marquees. Compared to infrared sensor parts used in the past as power switches for electronic equipment, the advantage of the KIP system is that it can distinguish a human presence and would not be interfered by moving objects or animals. In addition, the KIP system has a wider detection range and allows the users to program and detect different electricitysaving contexts and configurations for electronic equipment in different venues according to their individual needs. Therefore, through this test and assessment, we suggest that it is feasible to apply the KIP system in automatic lighting devices, televisions, air conditioners, or security monitoring systems.","PeriodicalId":142452,"journal":{"name":"The Journal of Technology Studies","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Technology Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21061/jots.v39i2.a.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional electronic marquees continue to consume energy even without a human presence. The purpose of this study is to assess energy-savings potential via the installation of the Kinect and IP Power integrated system (KIP) on an electronic marquee; this system will transfer the consumption data for total electricity to electricity-monitoring software (EZ-HD) using a smart meter (EZ-RE) and the ZigBee USB Dongle. An experiment was conducted at one school entrance for two periods during 10 school months, and it was found that the hourly electricity consumption rate for the original electronic marquee system was 1.25 kWh. After the KIP system was installed, the electronic marquee was activated only during human presence, and the hourly electricity consumption rate was 0.97 kWh, providing an average electricity savings rate of 22.4%. The results suggest that the KIP system can help to reduce the consumption of electricity for electronic marquees. Compared to infrared sensor parts used in the past as power switches for electronic equipment, the advantage of the KIP system is that it can distinguish a human presence and would not be interfered by moving objects or animals. In addition, the KIP system has a wider detection range and allows the users to program and detect different electricitysaving contexts and configurations for electronic equipment in different venues according to their individual needs. Therefore, through this test and assessment, we suggest that it is feasible to apply the KIP system in automatic lighting devices, televisions, air conditioners, or security monitoring systems.