Classification rule discovery using variant genetic algorithm

T. Shobha, R. Anandhi
{"title":"Classification rule discovery using variant genetic algorithm","authors":"T. Shobha, R. Anandhi","doi":"10.1109/CCUBE.2017.8394151","DOIUrl":null,"url":null,"abstract":"The motive of data mining is to extract information from large database. Classification rule mining is the most used mining technique to acquire hidden knowledge from real world databases for making useful decisions. Obtaining comprehensible rules is very significant in real world applications. In this paper, classification rules have been mined from large volume of database using genetic algorithm based approach. Genetic Algorithm (GA) provides more accurate results than other traditional methods. The primary parameters of GA are crossover, mutation and fitness function. Variations in these operators have shown better impact on accuracy. Experimental results on Fisher's Iris data from UC Irvine (UCI) Machine Learning repository, using proposed variant of GA has shown better performance.","PeriodicalId":443423,"journal":{"name":"2017 International Conference on Circuits, Controls, and Communications (CCUBE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Circuits, Controls, and Communications (CCUBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCUBE.2017.8394151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The motive of data mining is to extract information from large database. Classification rule mining is the most used mining technique to acquire hidden knowledge from real world databases for making useful decisions. Obtaining comprehensible rules is very significant in real world applications. In this paper, classification rules have been mined from large volume of database using genetic algorithm based approach. Genetic Algorithm (GA) provides more accurate results than other traditional methods. The primary parameters of GA are crossover, mutation and fitness function. Variations in these operators have shown better impact on accuracy. Experimental results on Fisher's Iris data from UC Irvine (UCI) Machine Learning repository, using proposed variant of GA has shown better performance.
基于变异遗传算法的分类规则发现
数据挖掘的目的是从大型数据库中提取信息。分类规则挖掘是最常用的挖掘技术,用于从现实世界的数据库中获取隐藏知识,从而做出有用的决策。获得可理解的规则在实际应用中非常重要。本文采用基于遗传算法的方法从海量数据库中挖掘分类规则。遗传算法(Genetic Algorithm, GA)比其他传统方法具有更高的精度。遗传算法的主要参数是交叉、突变和适应度函数。这些操作符的变化对准确性的影响更大。在加州大学欧文分校(UCI)机器学习存储库中的Fisher’s虹膜数据上,使用所提出的遗传算法变体显示出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信