{"title":"Max-Clique: A Top-Down Graph-Based Approach to Frequent Pattern Mining","authors":"Yan Xie, Philip S. Yu","doi":"10.1109/ICDM.2010.73","DOIUrl":null,"url":null,"abstract":"Frequent pattern mining is a fundamental problem in data mining research. We note that almost all state-of-the art algorithms may not be able to mine very long patterns in a large database with a huge set of frequent patterns. In this paper, we point our research to solve this difficult problem from a different perspective: we focus on mining top-k long maximal frequent patterns because long patterns are in general more interesting ones. Different from traditional level-wise mining or tree-growth strategies, our method works in a top-down manner. We pull large maximal cliques from a pattern graph constructed after some fast initial processing, and directly use such large-sized maximal cliques as promising candidates for long frequent patterns. A separate refinement stage is needed to further transform these candidates into true maximal patterns.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Frequent pattern mining is a fundamental problem in data mining research. We note that almost all state-of-the art algorithms may not be able to mine very long patterns in a large database with a huge set of frequent patterns. In this paper, we point our research to solve this difficult problem from a different perspective: we focus on mining top-k long maximal frequent patterns because long patterns are in general more interesting ones. Different from traditional level-wise mining or tree-growth strategies, our method works in a top-down manner. We pull large maximal cliques from a pattern graph constructed after some fast initial processing, and directly use such large-sized maximal cliques as promising candidates for long frequent patterns. A separate refinement stage is needed to further transform these candidates into true maximal patterns.