Max-Clique: A Top-Down Graph-Based Approach to Frequent Pattern Mining

Yan Xie, Philip S. Yu
{"title":"Max-Clique: A Top-Down Graph-Based Approach to Frequent Pattern Mining","authors":"Yan Xie, Philip S. Yu","doi":"10.1109/ICDM.2010.73","DOIUrl":null,"url":null,"abstract":"Frequent pattern mining is a fundamental problem in data mining research. We note that almost all state-of-the art algorithms may not be able to mine very long patterns in a large database with a huge set of frequent patterns. In this paper, we point our research to solve this difficult problem from a different perspective: we focus on mining top-k long maximal frequent patterns because long patterns are in general more interesting ones. Different from traditional level-wise mining or tree-growth strategies, our method works in a top-down manner. We pull large maximal cliques from a pattern graph constructed after some fast initial processing, and directly use such large-sized maximal cliques as promising candidates for long frequent patterns. A separate refinement stage is needed to further transform these candidates into true maximal patterns.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Frequent pattern mining is a fundamental problem in data mining research. We note that almost all state-of-the art algorithms may not be able to mine very long patterns in a large database with a huge set of frequent patterns. In this paper, we point our research to solve this difficult problem from a different perspective: we focus on mining top-k long maximal frequent patterns because long patterns are in general more interesting ones. Different from traditional level-wise mining or tree-growth strategies, our method works in a top-down manner. We pull large maximal cliques from a pattern graph constructed after some fast initial processing, and directly use such large-sized maximal cliques as promising candidates for long frequent patterns. A separate refinement stage is needed to further transform these candidates into true maximal patterns.
Max-Clique:一种自顶向下基于图的频繁模式挖掘方法
频繁模式挖掘是数据挖掘研究中的一个基本问题。我们注意到,几乎所有最先进的算法都可能无法在具有大量频繁模式集的大型数据库中挖掘非常长的模式。在本文中,我们的研究从不同的角度来解决这个难题:我们专注于挖掘top-k长最大频繁模式,因为长模式通常更有趣。与传统的分层挖掘或树木生长策略不同,我们的方法以自上而下的方式工作。我们从经过快速初始处理构建的模式图中提取出较大的极大团,并直接将这些较大的极大团作为长频繁模式的候选对象。需要一个单独的细化阶段来进一步将这些候选模式转换为真正的最大模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信