On the Restricted Poisson Ridge Regression Estimator

E. Yehia
{"title":"On the Restricted Poisson Ridge Regression Estimator","authors":"E. Yehia","doi":"10.11648/J.SJAMS.20210904.12","DOIUrl":null,"url":null,"abstract":"For modeling count data, the Poisson regression model is widely used in which the response variable takes non-negative integer values. However, the presence of strong correlation between the explanatory variables causes the problem of multicollinearity. Due to multicollinearity, the variance of the maximum likelihood estimator (MLE) will be inflated causing the parameters estimation to become unstable. Multicollinearity can be tackled by using biased estimators such as the ridge estimator in order to minimize the estimated variance of the regression coefficients. An alternative approach is to specify exact linear restrictions on the parameters in addition to regression model. In this paper, the restricted Poisson ridge regression estimator (RPRRE) is suggested to handle multicollinearity in Poisson regression model with exact linear restrictions on the parameters. In addition, the conditions of superiority of the suggested estimator in comparison to some existing estimators are discussed based on the mean squared error (MSE) matrix criterion. Moreover, a simulation study and a real data application are provided to illustrate the theoretical results. The results indicate that the suggested estimator, RPRRE, outperforms the other existing estimators in terms of scalar mean squared error (SMSE). Therefore, it is recommended to use the RPRRE for the Poisson regression model when the problem of multicollinearity is present.","PeriodicalId":422938,"journal":{"name":"Science Journal of Applied Mathematics and Statistics","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.SJAMS.20210904.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

For modeling count data, the Poisson regression model is widely used in which the response variable takes non-negative integer values. However, the presence of strong correlation between the explanatory variables causes the problem of multicollinearity. Due to multicollinearity, the variance of the maximum likelihood estimator (MLE) will be inflated causing the parameters estimation to become unstable. Multicollinearity can be tackled by using biased estimators such as the ridge estimator in order to minimize the estimated variance of the regression coefficients. An alternative approach is to specify exact linear restrictions on the parameters in addition to regression model. In this paper, the restricted Poisson ridge regression estimator (RPRRE) is suggested to handle multicollinearity in Poisson regression model with exact linear restrictions on the parameters. In addition, the conditions of superiority of the suggested estimator in comparison to some existing estimators are discussed based on the mean squared error (MSE) matrix criterion. Moreover, a simulation study and a real data application are provided to illustrate the theoretical results. The results indicate that the suggested estimator, RPRRE, outperforms the other existing estimators in terms of scalar mean squared error (SMSE). Therefore, it is recommended to use the RPRRE for the Poisson regression model when the problem of multicollinearity is present.
关于受限泊松岭回归估计量
对于计数数据的建模,广泛采用泊松回归模型,该模型的响应变量为非负整数值。然而,由于解释变量之间存在很强的相关性,导致了多重共线性问题。由于多重共线性,极大似然估计量(MLE)的方差会膨胀,导致参数估计变得不稳定。多重共线性可以通过使用脊估计等有偏估计来解决,以最小化回归系数的估计方差。除了回归模型外,另一种方法是对参数指定精确的线性限制。本文提出用受限泊松脊回归估计(RPRRE)来处理参数有精确线性限制的泊松回归模型中的多重共线性问题。此外,基于均方误差(MSE)矩阵准则,讨论了该估计量与现有估计量相比具有优越性的条件。最后,通过仿真研究和实际数据应用验证了理论结果。结果表明,RPRRE估计器在标量均方误差(SMSE)方面优于其他现有估计器。因此,当存在多重共线性问题时,建议对泊松回归模型使用RPRRE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信