{"title":"Mitigating Electrical-level Attacks towards Secure Multi-Tenant FPGAs in the Cloud","authors":"Jonas Krautter, Dennis R. E. Gnad, M. Tahoori","doi":"10.1145/3328222","DOIUrl":null,"url":null,"abstract":"A rising trend is the use of multi-tenant FPGAs, particularly in cloud environments, where partial access to the hardware is given to multiple third parties. This leads to new types of attacks in FPGAs, which operate not only on the logic level, but also on the electrical level through the common power delivery network. Since FPGAs are configured from the software-side, attackers are enabled to launch hardware attacks from software, impacting the security of an entire system. In this article, we show the first attempt of a countermeasure against attacks on the electrical level, which is based on a bitstream checking methodology. Bitstreams are translated back into flat technology mapped netlists, which are then checked for properties that indicate potential malicious runtime behavior of FPGA logic. Our approach can provide a metric of potential risk of the FPGA bitstream being used in active fault or passive side-channel attacks against other users of the FPGA fabric or the entire SoC platform.","PeriodicalId":162787,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3328222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50
Abstract
A rising trend is the use of multi-tenant FPGAs, particularly in cloud environments, where partial access to the hardware is given to multiple third parties. This leads to new types of attacks in FPGAs, which operate not only on the logic level, but also on the electrical level through the common power delivery network. Since FPGAs are configured from the software-side, attackers are enabled to launch hardware attacks from software, impacting the security of an entire system. In this article, we show the first attempt of a countermeasure against attacks on the electrical level, which is based on a bitstream checking methodology. Bitstreams are translated back into flat technology mapped netlists, which are then checked for properties that indicate potential malicious runtime behavior of FPGA logic. Our approach can provide a metric of potential risk of the FPGA bitstream being used in active fault or passive side-channel attacks against other users of the FPGA fabric or the entire SoC platform.