Time-varying norm optimal iterative learning identification

Nanjun Liu, A. Alleyne
{"title":"Time-varying norm optimal iterative learning identification","authors":"Nanjun Liu, A. Alleyne","doi":"10.1109/ACC.2013.6580894","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on improving the performance of an Iterative Learning Identification (ILI) algorithm for identifying discrete, Single-Input Single-Output (SISO), Linear Time- Varying (LTV) plants that are able to repeat their trajectories. The identification learning laws are determined through an optimization framework, which is similar in nature to the design of norm optimal Iterative Learning Control (ILC). The ILI algorithm has been previously demonstrated to be capable of tracking rapid parameter changes. However, when it is applied to systems with noise, it results in high frequency parameter fluctuation around their true values. This paper suggests a time-varying ILI technique to improve the steady state estimation while maintaining the ILI's ability to track rapid parameter changes.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6580894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we focus on improving the performance of an Iterative Learning Identification (ILI) algorithm for identifying discrete, Single-Input Single-Output (SISO), Linear Time- Varying (LTV) plants that are able to repeat their trajectories. The identification learning laws are determined through an optimization framework, which is similar in nature to the design of norm optimal Iterative Learning Control (ILC). The ILI algorithm has been previously demonstrated to be capable of tracking rapid parameter changes. However, when it is applied to systems with noise, it results in high frequency parameter fluctuation around their true values. This paper suggests a time-varying ILI technique to improve the steady state estimation while maintaining the ILI's ability to track rapid parameter changes.
时变范数最优迭代学习辨识
在本文中,我们专注于改进迭代学习识别(ILI)算法的性能,用于识别能够重复其轨迹的离散、单输入单输出(SISO)、线性时变(LTV)植物。识别学习规律是通过一个优化框架来确定的,该框架与范数最优迭代学习控制(ILC)的设计本质上类似。ILI算法先前已被证明能够跟踪快速参数变化。然而,当它应用于有噪声的系统时,会导致高频参数在其真值附近波动。本文提出了一种时变ILI技术,以改善稳态估计,同时保持ILI跟踪参数快速变化的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信