Posterior Cramér-Rao Lower Bound for Multiple Passive Sensors in an Uncertain Ocean Environment

P. Lei, Shuqing Ma, Wenke Wang, Le Li, Zemin Zhou, Yu Chen
{"title":"Posterior Cramér-Rao Lower Bound for Multiple Passive Sensors in an Uncertain Ocean Environment","authors":"P. Lei, Shuqing Ma, Wenke Wang, Le Li, Zemin Zhou, Yu Chen","doi":"10.1109/OCEANSE.2019.8867393","DOIUrl":null,"url":null,"abstract":"In this paper, our study is motivated by the fact that it is not always clear what the placement of the multiple passive sensors giving the best tracking performance for the underwater targets of interest might be. To account for the issue, posterior Cramér-Rao lower bound (PCRLB) is utilized, which provides a measure of the optimal achievable accuracy of the target state estimation. To derive the recursive Fisher information matrix (FIM) and PCRLB for multisensor multitarget state estimation in an uncertain ocean environment, we address the impact of the uncertain propagation, which is ignored by the previously researches. It is demonstrated that the propagation uncertainty and target tracking results play important roles in the FIM and PCRLB. Moreover, the general framework for integrated target tracking and sensor placement is also proposed.","PeriodicalId":375793,"journal":{"name":"OCEANS 2019 - Marseille","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 - Marseille","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2019.8867393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, our study is motivated by the fact that it is not always clear what the placement of the multiple passive sensors giving the best tracking performance for the underwater targets of interest might be. To account for the issue, posterior Cramér-Rao lower bound (PCRLB) is utilized, which provides a measure of the optimal achievable accuracy of the target state estimation. To derive the recursive Fisher information matrix (FIM) and PCRLB for multisensor multitarget state estimation in an uncertain ocean environment, we address the impact of the uncertain propagation, which is ignored by the previously researches. It is demonstrated that the propagation uncertainty and target tracking results play important roles in the FIM and PCRLB. Moreover, the general framework for integrated target tracking and sensor placement is also proposed.
不确定海洋环境下多被动传感器的后验cram - rao下界
在本文中,我们研究的动机是这样一个事实,即对感兴趣的水下目标提供最佳跟踪性能的多个无源传感器的放置位置并不总是很清楚。为了解决这个问题,使用了后验cram - rao下界(PCRLB),它提供了目标状态估计的最佳可实现精度的度量。为了推导不确定海洋环境下多传感器多目标状态估计的递归Fisher信息矩阵(FIM)和PCRLB,解决了以往研究忽略的不确定传播的影响。研究结果表明,传播不确定性和目标跟踪结果在fm和PCRLB中起着重要作用。此外,还提出了目标跟踪与传感器集成的总体框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信