Theory of Imagination in Economic Games

Michael Balkowiec
{"title":"Theory of Imagination in Economic Games","authors":"Michael Balkowiec","doi":"10.2139/ssrn.3843374","DOIUrl":null,"url":null,"abstract":"The paper presents a more complete theory of utility. In order to do so, the paper begins with Jon Von Neumann's original method of correspondences found in Theory of Games. Then by means of different correspondences between objects we define the entire economic game space as a pseudo-Euclidean space-time continuum. Using Green's method for ellipsoids of variable densities, we are then able to create a utility function which contains a removable hole discontinuity at the origin, and is continuous for returns bounded from negative one to infinity.","PeriodicalId":399171,"journal":{"name":"Philosophy of Science eJournal","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophy of Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3843374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a more complete theory of utility. In order to do so, the paper begins with Jon Von Neumann's original method of correspondences found in Theory of Games. Then by means of different correspondences between objects we define the entire economic game space as a pseudo-Euclidean space-time continuum. Using Green's method for ellipsoids of variable densities, we are then able to create a utility function which contains a removable hole discontinuity at the origin, and is continuous for returns bounded from negative one to infinity.
经济博弈中的想象理论
本文提出了一个较为完整的效用理论。为了做到这一点,本文从Jon Von Neumann在《博弈论》中发现的原始对应方法开始。然后,通过对象之间的不同对应关系,我们将整个经济博弈空间定义为伪欧几里得时空连续体。对于变密度椭球,使用格林方法,我们可以创建一个效用函数,它在原点包含一个可移动的孔不连续,并且在从- 1到∞的范围内是连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信