Diptarka Chakraborty, Debarati Das, Robert Krauthgamer
{"title":"Clustering Permutations: New Techniques with Streaming Applications","authors":"Diptarka Chakraborty, Debarati Das, Robert Krauthgamer","doi":"10.48550/arXiv.2212.01821","DOIUrl":null,"url":null,"abstract":"We study the classical metric $k$-median clustering problem over a set of input rankings (i.e., permutations), which has myriad applications, from social-choice theory to web search and databases. A folklore algorithm provides a $2$-approximate solution in polynomial time for all $k=O(1)$, and works irrespective of the underlying distance measure, so long it is a metric; however, going below the $2$-factor is a notorious challenge. We consider the Ulam distance, a variant of the well-known edit-distance metric, where strings are restricted to be permutations. For this metric, Chakraborty, Das, and Krauthgamer [SODA, 2021] provided a $(2-\\delta)$-approximation algorithm for $k=1$, where $\\delta\\approx 2^{-40}$. Our primary contribution is a new algorithmic framework for clustering a set of permutations. Our first result is a $1.999$-approximation algorithm for the metric $k$-median problem under the Ulam metric, that runs in time $(k \\log (nd))^{O(k)}n d^3$ for an input consisting of $n$ permutations over $[d]$. In fact, our framework is powerful enough to extend this result to the streaming model (where the $n$ input permutations arrive one by one) using only polylogarithmic (in $n$) space. Additionally, we show that similar results can be obtained even in the presence of outliers, which is presumably a more difficult problem.","PeriodicalId":123734,"journal":{"name":"Information Technology Convergence and Services","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology Convergence and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.01821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We study the classical metric $k$-median clustering problem over a set of input rankings (i.e., permutations), which has myriad applications, from social-choice theory to web search and databases. A folklore algorithm provides a $2$-approximate solution in polynomial time for all $k=O(1)$, and works irrespective of the underlying distance measure, so long it is a metric; however, going below the $2$-factor is a notorious challenge. We consider the Ulam distance, a variant of the well-known edit-distance metric, where strings are restricted to be permutations. For this metric, Chakraborty, Das, and Krauthgamer [SODA, 2021] provided a $(2-\delta)$-approximation algorithm for $k=1$, where $\delta\approx 2^{-40}$. Our primary contribution is a new algorithmic framework for clustering a set of permutations. Our first result is a $1.999$-approximation algorithm for the metric $k$-median problem under the Ulam metric, that runs in time $(k \log (nd))^{O(k)}n d^3$ for an input consisting of $n$ permutations over $[d]$. In fact, our framework is powerful enough to extend this result to the streaming model (where the $n$ input permutations arrive one by one) using only polylogarithmic (in $n$) space. Additionally, we show that similar results can be obtained even in the presence of outliers, which is presumably a more difficult problem.