FLATS: Filling Logic and Testing Spatially for FPGA Authentication and Tamper Detection

Adam Duncan, Grant Skipper, Andrew Stern, Adib Nahiyan, Fahim Rahman, Andrew Lukefahr, M. Tehranipoor, D. M. Swany
{"title":"FLATS: Filling Logic and Testing Spatially for FPGA Authentication and Tamper Detection","authors":"Adam Duncan, Grant Skipper, Andrew Stern, Adib Nahiyan, Fahim Rahman, Andrew Lukefahr, M. Tehranipoor, D. M. Swany","doi":"10.1109/HST.2019.8741025","DOIUrl":null,"url":null,"abstract":"Security-critical field programmable gate array (FPGA) designs traditionally rely on bitstream encryption and hashing to prevent bitstream modifications and provide design authentication. Recent attacks to extract bitstream encryption keys, and research in automated bitstream manipulation tools, have created a class of vulnerabilities involving post-synthesis low-level FPGA editing. Current authentication and tamper (e.g., malicious modification) detection approaches dependent upon hash-based comparison mechanisms and register transfer level safeguards are vulnerable to these post-synthesis exploits. In this paper, we propose FLATS, which provides filling logic and testing spatially to combat such vulnerability. FLATS fills unused lookup tables (LUTs) within the FPGA design and inserts infrared-emitting spatial watermarks into the partially used LUTs at the post-synthesis stage for physical authentication and tamper detection using backside infrared imaging. FLATS takes an existing synthesized design and re-purposes a portion of its LUT initialization to function as a watermark allowing for the detection of changes to the post-synthesis placement and initialization. Experimental results validate the FLATS architecture on a 28nm Xilinx FPGA with less than 12% look-up table utilization overhead and negligible compromises in power and speed.","PeriodicalId":146928,"journal":{"name":"2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2019.8741025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Security-critical field programmable gate array (FPGA) designs traditionally rely on bitstream encryption and hashing to prevent bitstream modifications and provide design authentication. Recent attacks to extract bitstream encryption keys, and research in automated bitstream manipulation tools, have created a class of vulnerabilities involving post-synthesis low-level FPGA editing. Current authentication and tamper (e.g., malicious modification) detection approaches dependent upon hash-based comparison mechanisms and register transfer level safeguards are vulnerable to these post-synthesis exploits. In this paper, we propose FLATS, which provides filling logic and testing spatially to combat such vulnerability. FLATS fills unused lookup tables (LUTs) within the FPGA design and inserts infrared-emitting spatial watermarks into the partially used LUTs at the post-synthesis stage for physical authentication and tamper detection using backside infrared imaging. FLATS takes an existing synthesized design and re-purposes a portion of its LUT initialization to function as a watermark allowing for the detection of changes to the post-synthesis placement and initialization. Experimental results validate the FLATS architecture on a 28nm Xilinx FPGA with less than 12% look-up table utilization overhead and negligible compromises in power and speed.
FPGA认证和篡改检测的填充逻辑和空间测试
安全关键型现场可编程门阵列(FPGA)设计传统上依赖于比特流加密和哈希来防止比特流修改并提供设计认证。最近对提取比特流加密密钥的攻击,以及对自动比特流操作工具的研究,已经产生了一类涉及合成后低级FPGA编辑的漏洞。当前的身份验证和篡改(例如恶意修改)检测方法依赖于基于哈希的比较机制和寄存器传输级保护措施,容易受到这些合成后漏洞的攻击。在本文中,我们提出了FLATS,它提供了填充逻辑和空间测试来对抗这种脆弱性。FLATS填充FPGA设计中未使用的查找表(lut),并在合成后阶段将红外发射空间水印插入部分使用的lut中,以便使用背面红外成像进行物理认证和篡改检测。FLATS采用现有的合成设计,并重新利用其LUT初始化的一部分作为水印,允许检测合成后放置和初始化的变化。实验结果在28nm Xilinx FPGA上验证了FLATS架构,查找表利用率低于12%,功耗和速度方面的折衷可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信