SapiMouse: Mouse Dynamics-based User Authentication Using Deep Feature Learning

M. Antal, Norbert Fejér, Krisztián Búza
{"title":"SapiMouse: Mouse Dynamics-based User Authentication Using Deep Feature Learning","authors":"M. Antal, Norbert Fejér, Krisztián Búza","doi":"10.1109/SACI51354.2021.9465583","DOIUrl":null,"url":null,"abstract":"The increasing interest in the analysis of mouse-based human-computer interaction may be attributed to prominent applications, such as user authentication and bot detection based on mouse dynamics. The aim of our paper is to present the SapiMouse dataset that can be used for training and evaluation of both user authentication and bot detection systems. In this paper we present the tools and protocols used for data collection, as well as the exploratory analysis of this new dataset. In addition, we also present user authentication results on this new dataset. Instead of using handcrafted features, our system learns the features directly from raw data using a convolutional neural network. The performance of our system is 0.94 AUC for 15 seconds of data.","PeriodicalId":321907,"journal":{"name":"2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI51354.2021.9465583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The increasing interest in the analysis of mouse-based human-computer interaction may be attributed to prominent applications, such as user authentication and bot detection based on mouse dynamics. The aim of our paper is to present the SapiMouse dataset that can be used for training and evaluation of both user authentication and bot detection systems. In this paper we present the tools and protocols used for data collection, as well as the exploratory analysis of this new dataset. In addition, we also present user authentication results on this new dataset. Instead of using handcrafted features, our system learns the features directly from raw data using a convolutional neural network. The performance of our system is 0.94 AUC for 15 seconds of data.
使用深度特征学习的基于鼠标动态的用户认证
对基于鼠标的人机交互分析的兴趣日益增加可能归因于突出的应用,例如基于鼠标动态的用户身份验证和机器人检测。本文的目的是介绍SapiMouse数据集,该数据集可用于用户身份验证和机器人检测系统的训练和评估。在本文中,我们介绍了用于数据收集的工具和协议,以及对这个新数据集的探索性分析。此外,我们还在这个新数据集上展示了用户身份验证结果。我们的系统没有使用手工制作的特征,而是使用卷积神经网络直接从原始数据中学习特征。我们的系统的性能为0.94 AUC 15秒的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信