P2-type layered high-entropy oxides as sodium-ion cathode materials

Junbo Wang, S. L. Dreyer, Kai Wang, Ziming Ding, T. Diemant, Guruprakash Karkera, Yanjiao Ma, Abhishek Sarkar, Bei Zhou, M. Gorbunov, Ahmad Omar, D. Mikhailova, V. Presser, M. Fichtner, H. Hahn, T. Brezesinski, B. Breitung, Qingsong Wang
{"title":"P2-type layered high-entropy oxides as sodium-ion cathode materials","authors":"Junbo Wang, S. L. Dreyer, Kai Wang, Ziming Ding, T. Diemant, Guruprakash Karkera, Yanjiao Ma, Abhishek Sarkar, Bei Zhou, M. Gorbunov, Ahmad Omar, D. Mikhailova, V. Presser, M. Fichtner, H. Hahn, T. Brezesinski, B. Breitung, Qingsong Wang","doi":"10.1088/2752-5724/ac8ab9","DOIUrl":null,"url":null,"abstract":"P2-type layered oxides with the general Na-deficient composition Na x TMO2 (x < 1, TM: transition metal) are a promising class of cathode materials for sodium-ion batteries. The open Na+ transport pathways present in the structure lead to low diffusion barriers and enable high charge/discharge rates. However, a phase transition from P2 to O2 structure occurring above 4.2 V and metal dissolution at low potentials upon discharge results in rapid capacity degradation. In this work, we demonstrate the positive effect of configurational entropy on the stability of the crystal structure during battery operation. Three different compositions of layered P2-type oxides were synthesized by solid-state chemistry, Na0.67(Mn0.55Ni0.21Co0.24)O2, Na0.67(Mn0.45Ni0.18Co0.24Ti0.1Mg0.03)O2 and Na0.67(Mn0.45Ni0.18Co0.18Ti0.1Mg0.03Al0.04Fe0.02)O2 with low, medium and high configurational entropy, respectively. The high-entropy cathode material shows lower structural transformation and Mn dissolution upon cycling in a wide voltage range from 1.5 to 4.6 V. Advanced operando techniques and post-mortem analysis were used to probe the underlying reaction mechanism thoroughly. Overall, the high-entropy strategy is a promising route for improving the electrochemical performance of P2 layered oxide cathodes for advanced sodium-ion battery applications.","PeriodicalId":221966,"journal":{"name":"Materials Futures","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Futures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5724/ac8ab9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

P2-type layered oxides with the general Na-deficient composition Na x TMO2 (x < 1, TM: transition metal) are a promising class of cathode materials for sodium-ion batteries. The open Na+ transport pathways present in the structure lead to low diffusion barriers and enable high charge/discharge rates. However, a phase transition from P2 to O2 structure occurring above 4.2 V and metal dissolution at low potentials upon discharge results in rapid capacity degradation. In this work, we demonstrate the positive effect of configurational entropy on the stability of the crystal structure during battery operation. Three different compositions of layered P2-type oxides were synthesized by solid-state chemistry, Na0.67(Mn0.55Ni0.21Co0.24)O2, Na0.67(Mn0.45Ni0.18Co0.24Ti0.1Mg0.03)O2 and Na0.67(Mn0.45Ni0.18Co0.18Ti0.1Mg0.03Al0.04Fe0.02)O2 with low, medium and high configurational entropy, respectively. The high-entropy cathode material shows lower structural transformation and Mn dissolution upon cycling in a wide voltage range from 1.5 to 4.6 V. Advanced operando techniques and post-mortem analysis were used to probe the underlying reaction mechanism thoroughly. Overall, the high-entropy strategy is a promising route for improving the electrochemical performance of P2 layered oxide cathodes for advanced sodium-ion battery applications.
p2型层状高熵氧化物作为钠离子正极材料
具有一般Na-deficient成分Na x TMO2 (x < 1, TM:过渡金属)的p2型层状氧化物是一类很有前途的钠离子电池正极材料。结构中存在的开放Na+传输途径导致低扩散障碍并实现高充放电速率。然而,在4.2 V以上发生从P2到O2结构的相变以及放电时金属在低电位下的溶解导致了容量的快速退化。在这项工作中,我们证明了构型熵对电池运行过程中晶体结构稳定性的积极影响。采用固态化学方法合成了三种不同组成的层状p2型氧化物:Na0.67(Mn0.55Ni0.21Co0.24)O2、Na0.67(Mn0.45Ni0.18Co0.24Ti0.1Mg0.03)O2和Na0.67(Mn0.45Ni0.18Co0.18Ti0.1Mg0.03Al0.04Fe0.02)O2,分别具有低、中、高三种构型熵。在1.5 ~ 4.6 V宽电压范围内循环后,高熵正极材料表现出较低的结构转变和Mn溶解。采用先进的操作技术和事后分析,深入探讨了潜在的反应机理。综上所述,高熵策略是提高P2层状氧化物阴极电化学性能的一条有前途的途径,可用于先进的钠离子电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信