Diameter constrained reliability: Complexity and distinguished topologies

E. Canale, H. Cancela, F. Robledo, P. Romero, Pablo Sartor
{"title":"Diameter constrained reliability: Complexity and distinguished topologies","authors":"E. Canale, H. Cancela, F. Robledo, P. Romero, Pablo Sartor","doi":"10.1109/RNDM.2014.7014935","DOIUrl":null,"url":null,"abstract":"Let G = (V,E) be a simple graph with |V| = n nodes and |E| = m links, a subset K ⊆ V of terminals, a vector p = (p<sub>1</sub>, ..., p<sub>m</sub>) ∈ [0, 1]<sup>m</sup> and a positive integer d, called diameter. We assume nodes are perfect but links fail stochastically and independently, with probabilities q<sub>i</sub> = 1 - p<sub>i</sub>. The diameter-constrained reliability (DCR for short), is the probability that the terminals of the resulting subgraph remain connected by paths composed by d links, or less. This number is denoted by R<sub>K,G</sub><sup>d</sup>(p).","PeriodicalId":299072,"journal":{"name":"2014 6th International Workshop on Reliable Networks Design and Modeling (RNDM)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 6th International Workshop on Reliable Networks Design and Modeling (RNDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RNDM.2014.7014935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let G = (V,E) be a simple graph with |V| = n nodes and |E| = m links, a subset K ⊆ V of terminals, a vector p = (p1, ..., pm) ∈ [0, 1]m and a positive integer d, called diameter. We assume nodes are perfect but links fail stochastically and independently, with probabilities qi = 1 - pi. The diameter-constrained reliability (DCR for short), is the probability that the terminals of the resulting subgraph remain connected by paths composed by d links, or less. This number is denoted by RK,Gd(p).
直径约束可靠性:复杂性和区分拓扑
设G = (V,E)为一个具有|V| = n个节点、|E| = m个链路的简单图,一个有若干个终端的子集K⊥V,一个向量p = (p1,…), pm)∈[0,1]m和正整数d,称为直径。我们假设节点是完美的,但链接是随机和独立的,概率qi = 1 - pi。直径约束可靠度(简称DCR)是结果子图的终端保持由d条或更少的链路组成的路径连接的概率。这个数字用RK,Gd(p)表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信