Estimation of Ability with Reduced Asymptotic Mean Square Error in Item Response Theory

H. Ogasawara
{"title":"Estimation of Ability with Reduced Asymptotic Mean Square Error in Item Response Theory","authors":"H. Ogasawara","doi":"10.14490/JJSS.43.187","DOIUrl":null,"url":null,"abstract":"A method of the weighted score or penalized likelihood for estimation of ability reducing the asymptotic mean square error is derived. In this method, associated item parameters are assumed to be given or estimated by using a separate calibration sample with the size of an appropriate order. The method can be seen as an extension of the weighted likelihood method that removes the asymptotic bias of the maximum likelihood estimator. In the proposed method, some bias is retained while variance is reduced by using a multiplicative constant for the weight in the weighted score. A lower bound of the constant minimizing the asymptotic mean square error is found under the logistic model having identical items. The lower bound is numerically also shown to be reasonable in the case of the 3-parameter logistic model, with and without model misspecification.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.43.187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A method of the weighted score or penalized likelihood for estimation of ability reducing the asymptotic mean square error is derived. In this method, associated item parameters are assumed to be given or estimated by using a separate calibration sample with the size of an appropriate order. The method can be seen as an extension of the weighted likelihood method that removes the asymptotic bias of the maximum likelihood estimator. In the proposed method, some bias is retained while variance is reduced by using a multiplicative constant for the weight in the weighted score. A lower bound of the constant minimizing the asymptotic mean square error is found under the logistic model having identical items. The lower bound is numerically also shown to be reasonable in the case of the 3-parameter logistic model, with and without model misspecification.
项目反应理论中具有减小渐近均方误差的能力估计
提出了一种加权分数或惩罚似然估计能力的方法,以减小渐近均方误差。在这种方法中,相关的项目参数被假定是给定的或估计的,通过使用一个单独的校准样本的大小适当的顺序。该方法可以看作是加权似然方法的扩展,消除了极大似然估计量的渐近偏差。在该方法中,通过对加权分数中的权重使用乘法常数来减小方差,同时保留了一些偏差。在具有相同项目的logistic模型下,找到了使渐近均方误差最小的常数下界。在3参数逻辑模型的情况下,无论是否存在模型错配,下界在数值上也是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信