Predicting the Presence of Amphibians Near Road Construction Sites Using Emerging Machine Learning Algorithms

Ipsita Goel, Siddharth Rajesh Goradia, Anil Kumar Kakelli
{"title":"Predicting the Presence of Amphibians Near Road Construction Sites Using Emerging Machine Learning Algorithms","authors":"Ipsita Goel, Siddharth Rajesh Goradia, Anil Kumar Kakelli","doi":"10.1109/aimv53313.2021.9670972","DOIUrl":null,"url":null,"abstract":"The construction of dense road networks exerts a drastic influence on the persistence of amphibian species inhabiting the adjacent areas. Preventing any arising conflicts between nature conservation and urbanization is vital. We suggest an efficient system to predict the existence of amphibians in the vicinity while constructing roads and planned infrastructure projects. This model uses the XGBoost framework. Moreover, we implement various classification techniques such as XGBClassifier with GridSearchCV and without GridSearchCV, Naive Bayes Classifier, Decision Tree, KNN Classifier, SVM, and RidgeClassifier and compare their performances. Comparative review of these classifiers shows that XGBClassifier with GridSearchCV outperforms the other classification algorithms with high accuracy. The factors thus identified should be taken into account for sustainable urban planning.","PeriodicalId":135318,"journal":{"name":"2021 International Conference on Artificial Intelligence and Machine Vision (AIMV)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence and Machine Vision (AIMV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aimv53313.2021.9670972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The construction of dense road networks exerts a drastic influence on the persistence of amphibian species inhabiting the adjacent areas. Preventing any arising conflicts between nature conservation and urbanization is vital. We suggest an efficient system to predict the existence of amphibians in the vicinity while constructing roads and planned infrastructure projects. This model uses the XGBoost framework. Moreover, we implement various classification techniques such as XGBClassifier with GridSearchCV and without GridSearchCV, Naive Bayes Classifier, Decision Tree, KNN Classifier, SVM, and RidgeClassifier and compare their performances. Comparative review of these classifiers shows that XGBClassifier with GridSearchCV outperforms the other classification algorithms with high accuracy. The factors thus identified should be taken into account for sustainable urban planning.
使用新兴机器学习算法预测道路建设工地附近两栖动物的存在
密集道路网络的建设对邻近地区两栖动物物种的持续性产生了巨大的影响。防止自然保护与城市化之间产生冲突至关重要。我们提出了一个有效的系统来预测附近的两栖动物的存在,同时建设道路和规划的基础设施项目。该模型使用XGBoost框架。此外,我们实现了各种分类技术,如带GridSearchCV和不带GridSearchCV的XGBClassifier、朴素贝叶斯分类器、决策树、KNN分类器、SVM和ridgecclassifier,并比较了它们的性能。对比分析表明,结合GridSearchCV的XGBClassifier在准确率方面优于其他分类算法。可持续城市规划应考虑到由此确定的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信