Xiu Li, J. Dong, Bowen Li, Yi Zhang, Yongbing Zhang, A. Veeraraghavan, Xiangyang Ji
{"title":"Fast confocal microscopy imaging based on deep learning","authors":"Xiu Li, J. Dong, Bowen Li, Yi Zhang, Yongbing Zhang, A. Veeraraghavan, Xiangyang Ji","doi":"10.1109/ICCP48838.2020.9105215","DOIUrl":null,"url":null,"abstract":"Confocal microscopy is the de-facto standard technique in bio-imaging for acquiring 3D images in the presence of tissue scattering. However, the point-scanning mechanism inherent in confocal microscopy implies that the capture speed is much too slow for imaging dynamic objects at sufficient spatial resolution and signal to noise ratio(SNR). In this paper, we propose an algorithm for super-resolution confocal microscopy that allows us to capture high-resolution, high SNR confocal images at an order of magnitude faster acquisition speed. The proposed Back-Projection Generative Adversarial Network (BPGAN) consists of a feature extraction step followed by a back-projection feedback module (BPFM) and an associated reconstruction network, these together allow for super-resolution of low-resolution confocal scans. We validate our method using real confocal captures of multiple biological specimens and the results demonstrate that our proposed BPGAN is able to achieve similar quality to high-resolution confocal scans while the imaging speed can be up to 64 times faster.","PeriodicalId":406823,"journal":{"name":"2020 IEEE International Conference on Computational Photography (ICCP)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP48838.2020.9105215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Confocal microscopy is the de-facto standard technique in bio-imaging for acquiring 3D images in the presence of tissue scattering. However, the point-scanning mechanism inherent in confocal microscopy implies that the capture speed is much too slow for imaging dynamic objects at sufficient spatial resolution and signal to noise ratio(SNR). In this paper, we propose an algorithm for super-resolution confocal microscopy that allows us to capture high-resolution, high SNR confocal images at an order of magnitude faster acquisition speed. The proposed Back-Projection Generative Adversarial Network (BPGAN) consists of a feature extraction step followed by a back-projection feedback module (BPFM) and an associated reconstruction network, these together allow for super-resolution of low-resolution confocal scans. We validate our method using real confocal captures of multiple biological specimens and the results demonstrate that our proposed BPGAN is able to achieve similar quality to high-resolution confocal scans while the imaging speed can be up to 64 times faster.