Bose–Einstein Statistics

R. Swendsen
{"title":"Bose–Einstein Statistics","authors":"R. Swendsen","doi":"10.1093/ACPROF:OSO/9780199646944.003.0027","DOIUrl":null,"url":null,"abstract":"The properties of the ideal Bose gas are calculated from the integral equations for the energy and the number of particles as a function of the temperature and chemical potential. It is shown that the integral equations break down below the Einstein temperature that corresponds to the transition to the low-temperature state. The lowest single-particle energy level must be treated explicitly to get the proper equations. With the inclusion of the lowest single-particle energy level, the low-temperature behavior is calculated. The occupation of the lowest level becomes comparable to the total number of particles in the system below the Einstein temperature, and equal to the total number of particles at zero temperature. A numerical solution to the properties of the Bose gas is discussed, and the detailed calculations are assigned to the problems at the end of the chapter.","PeriodicalId":102491,"journal":{"name":"An Introduction to Statistical Mechanics and Thermodynamics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"An Introduction to Statistical Mechanics and Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ACPROF:OSO/9780199646944.003.0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The properties of the ideal Bose gas are calculated from the integral equations for the energy and the number of particles as a function of the temperature and chemical potential. It is shown that the integral equations break down below the Einstein temperature that corresponds to the transition to the low-temperature state. The lowest single-particle energy level must be treated explicitly to get the proper equations. With the inclusion of the lowest single-particle energy level, the low-temperature behavior is calculated. The occupation of the lowest level becomes comparable to the total number of particles in the system below the Einstein temperature, and equal to the total number of particles at zero temperature. A numerical solution to the properties of the Bose gas is discussed, and the detailed calculations are assigned to the problems at the end of the chapter.
玻色-爱因斯坦统计
从能量和粒子数作为温度和化学势的函数的积分方程计算了理想玻色气体的性质。结果表明,积分方程在爱因斯坦温度以下分解,对应于向低温态的转变。最低的单粒子能级必须明确处理,以得到适当的方程。在包含最低单粒子能级的情况下,计算了其低温行为。最低能级的占据与低于爱因斯坦温度的系统中的粒子总数相当,等于零温度下的粒子总数。讨论了玻色气体性质的数值解,并在本章末尾给出了详细的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信