Improved answer ranking in social question-answering portals

SMUC '11 Pub Date : 2011-10-28 DOI:10.1145/2065023.2065030
F. Hieber, S. Riezler
{"title":"Improved answer ranking in social question-answering portals","authors":"F. Hieber, S. Riezler","doi":"10.1145/2065023.2065030","DOIUrl":null,"url":null,"abstract":"Community QA portals provide an important resource for non-factoid question-answering. The inherent noisiness of user-generated data makes the identification of high-quality content challenging but all the more important. We present an approach to answer ranking and show the usefulness of features that explicitly model answer quality. Furthermore, we introduce the idea of leveraging snippets of web search results for query expansion in answer ranking. We present an evaluation setup that avoids spurious results reported in earlier work. Our results show the usefulness of our features and query expansion techniques, and point to the importance of regularization when learning from noisy data.","PeriodicalId":341071,"journal":{"name":"SMUC '11","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMUC '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2065023.2065030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Community QA portals provide an important resource for non-factoid question-answering. The inherent noisiness of user-generated data makes the identification of high-quality content challenging but all the more important. We present an approach to answer ranking and show the usefulness of features that explicitly model answer quality. Furthermore, we introduce the idea of leveraging snippets of web search results for query expansion in answer ranking. We present an evaluation setup that avoids spurious results reported in earlier work. Our results show the usefulness of our features and query expansion techniques, and point to the importance of regularization when learning from noisy data.
改进了社交问答门户的答案排名
社区QA门户为非事实性的问题回答提供了重要的资源。用户生成数据的固有噪声使得高质量内容的识别具有挑战性,但也更加重要。我们提出了一种答案排名的方法,并展示了明确建模答案质量的特征的有用性。此外,我们还介绍了利用网页搜索结果片段在答案排名中进行查询扩展的想法。我们提出了一种评估设置,以避免早期工作中报告的虚假结果。我们的结果显示了我们的特征和查询扩展技术的有用性,并指出了在从噪声数据中学习时正则化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信