Clustering of Human Gait with Parkinson's Disease by Using Dynamic Time Warping

Tobias Steinmetzer, Ingrid Bönninger, Barbara Priwitzer, F. Reinhardt, Markus Reckhardt, Dorela Erk, C. Travieso-González
{"title":"Clustering of Human Gait with Parkinson's Disease by Using Dynamic Time Warping","authors":"Tobias Steinmetzer, Ingrid Bönninger, Barbara Priwitzer, F. Reinhardt, Markus Reckhardt, Dorela Erk, C. Travieso-González","doi":"10.1109/IWOBI.2018.8464203","DOIUrl":null,"url":null,"abstract":"We present a new method for detecting gait disorders according to their stadium using cluster methods for sensor data. 21 healthy and 18 Parkinson subjects performed the Time Up and Go test. The time series were segmented into separate steps. For the analysis the horizontal acceleration measured by a mobile sensor system was considered. We used Dynamic Time Warping and Hierarchical Custering to distinguish the stadiums. A specificity of 92% was achieved.","PeriodicalId":127078,"journal":{"name":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2018.8464203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We present a new method for detecting gait disorders according to their stadium using cluster methods for sensor data. 21 healthy and 18 Parkinson subjects performed the Time Up and Go test. The time series were segmented into separate steps. For the analysis the horizontal acceleration measured by a mobile sensor system was considered. We used Dynamic Time Warping and Hierarchical Custering to distinguish the stadiums. A specificity of 92% was achieved.
基于动态时间翘曲的帕金森病患者步态聚类
我们提出了一种新的方法来检测步态障碍根据他们的体育场使用聚类方法的传感器数据。21名健康受试者和18名帕金森受试者进行了Time Up and Go测试。时间序列被分割成不同的步骤。为了进行分析,考虑了移动传感器系统测量的水平加速度。我们使用动态时间扭曲和分层集群来区分体育场。特异性达到92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信