Identifying Alzheimer’s disease from 4D fMRI using hybrid 3DCNN and GRU networks

Yifan Cao, Meili Lu, Jiajun Fu, Zhaohua Guo, Zicheng Gao
{"title":"Identifying Alzheimer’s disease from 4D fMRI using hybrid 3DCNN and GRU networks","authors":"Yifan Cao, Meili Lu, Jiajun Fu, Zhaohua Guo, Zicheng Gao","doi":"10.1117/12.2644454","DOIUrl":null,"url":null,"abstract":"In recently years, motivated by the excellent performance in automatic feature extraction and complex patterns detecting from raw data, recently, deep learning technologies have been widely used in analyzing fMRI data for Alzheimer’s disease classification. However, most current studies did not take full advantage of the temporal and spatial features of fMRI, which may result in ignoring some important information and influencing classification performance. In this paper, we propose a novel approach based on deep learning to learn temporal and spatial features of 4D fMRI for Alzheimer’s disease classification. This model is composed of 3D Convolutional Neural Network(3DCNN) and recurrent neural network. Experimental results demonstrated that the proposed approach could discriminate Alzheimer’s patients from healthy controls with a high accuracy rate.","PeriodicalId":314555,"journal":{"name":"International Conference on Digital Image Processing","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2644454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recently years, motivated by the excellent performance in automatic feature extraction and complex patterns detecting from raw data, recently, deep learning technologies have been widely used in analyzing fMRI data for Alzheimer’s disease classification. However, most current studies did not take full advantage of the temporal and spatial features of fMRI, which may result in ignoring some important information and influencing classification performance. In this paper, we propose a novel approach based on deep learning to learn temporal and spatial features of 4D fMRI for Alzheimer’s disease classification. This model is composed of 3D Convolutional Neural Network(3DCNN) and recurrent neural network. Experimental results demonstrated that the proposed approach could discriminate Alzheimer’s patients from healthy controls with a high accuracy rate.
使用混合3DCNN和GRU网络从4D fMRI识别阿尔茨海默病
近年来,由于深度学习技术在原始数据自动特征提取和复杂模式检测方面的优异性能,近年来,深度学习技术被广泛应用于分析fMRI数据用于阿尔茨海默病分类。然而,目前的研究大多没有充分利用fMRI的时空特征,可能会忽略一些重要信息,影响分类效果。在本文中,我们提出了一种基于深度学习的新方法来学习4D fMRI的时空特征用于阿尔茨海默病分类。该模型由三维卷积神经网络(3DCNN)和递归神经网络组成。实验结果表明,该方法能够以较高的准确率将阿尔茨海默病患者与健康对照区分开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信