{"title":"Localization of Subsurface Targets Based on Symmetric Sub-array MIMO Radar","authors":"Qinghua Liu, Yuan-zhi He, Changyong Jiang","doi":"10.3745/JIPS.04.0179","DOIUrl":null,"url":null,"abstract":"For the issue of subsurface target localization by reverse projection, a new approach of target localization with different distances based on symmetric sub-array multiple-input multiple-output (MIMO) radar is proposed in this paper. By utilizing the particularity of structure of the two symmetric sub-arrays, the received signals are jointly reconstructed to eliminate the distance information from the steering vectors. The distance-independent direction of arrival (DOA) estimates are acquired, and the localizations of subsurface targets with different distances are realized by reverse projection. According to the localization mechanism and application characteristics of the proposed algorithm, the grid zooming method based on spatial segmentation is used to optimize the locaiton efficiency. Simulation results demonstrate the effectiveness of the proposed localization method and optimization scheme.","PeriodicalId":415161,"journal":{"name":"J. Inf. Process. Syst.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Process. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/JIPS.04.0179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
For the issue of subsurface target localization by reverse projection, a new approach of target localization with different distances based on symmetric sub-array multiple-input multiple-output (MIMO) radar is proposed in this paper. By utilizing the particularity of structure of the two symmetric sub-arrays, the received signals are jointly reconstructed to eliminate the distance information from the steering vectors. The distance-independent direction of arrival (DOA) estimates are acquired, and the localizations of subsurface targets with different distances are realized by reverse projection. According to the localization mechanism and application characteristics of the proposed algorithm, the grid zooming method based on spatial segmentation is used to optimize the locaiton efficiency. Simulation results demonstrate the effectiveness of the proposed localization method and optimization scheme.