IR-drop aware Design & technology co-optimization for N5 node with different device and cell height options

L. Mattii, D. Milojevic, P. Debacker, Y. Sherazi, Mladen Berekovic, P. Raghavan
{"title":"IR-drop aware Design & technology co-optimization for N5 node with different device and cell height options","authors":"L. Mattii, D. Milojevic, P. Debacker, Y. Sherazi, Mladen Berekovic, P. Raghavan","doi":"10.1109/ICCAD.2017.8203764","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel Design-Technology Co-Optimization (DTCO) framework that enables PDK generation and design implementation of sub-10nm technology nodes. The framework allows to study the impact of different technology options at design level and use effective design Power, Performance and Area (PPA) to decide on right technology option. Design implementation flow is IR-drop aware, allowing integration of optimized Power Delivery Network (PDN) for different device/cell options. Using N5-like technology node assumptions (contacted poly and metallization pitch of 42 and 32nm), we generate digital PDKs for different device (finFET, 2 & 3 nanowires) and standard cell options (3, 2 or 1 fins & 7.5 or 6-Tracks cell height). Different PDKs have been used to implement and characterize a wire dominated circuit. Our study shows that the design PDN/IR-drop awareness is fundamental to complete DTCO approach for sub-10nm nodes. Using our dedicated design methodology we reach the IR-drop target of 2.5% VDD (on the lowest metal layers), while minimizing the area degradation induced by the PDN. Further, we demonstrate that such optimized PDN is mandatory to enable the 20% area gain when moving from 7.5 to 6-Tracks cell height. Finally, we show that the impact of different device options is in range of 15% Power, 2X Performance and 20% Area, further validating the need of a fully integrated DTCO.","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper we propose a novel Design-Technology Co-Optimization (DTCO) framework that enables PDK generation and design implementation of sub-10nm technology nodes. The framework allows to study the impact of different technology options at design level and use effective design Power, Performance and Area (PPA) to decide on right technology option. Design implementation flow is IR-drop aware, allowing integration of optimized Power Delivery Network (PDN) for different device/cell options. Using N5-like technology node assumptions (contacted poly and metallization pitch of 42 and 32nm), we generate digital PDKs for different device (finFET, 2 & 3 nanowires) and standard cell options (3, 2 or 1 fins & 7.5 or 6-Tracks cell height). Different PDKs have been used to implement and characterize a wire dominated circuit. Our study shows that the design PDN/IR-drop awareness is fundamental to complete DTCO approach for sub-10nm nodes. Using our dedicated design methodology we reach the IR-drop target of 2.5% VDD (on the lowest metal layers), while minimizing the area degradation induced by the PDN. Further, we demonstrate that such optimized PDN is mandatory to enable the 20% area gain when moving from 7.5 to 6-Tracks cell height. Finally, we show that the impact of different device options is in range of 15% Power, 2X Performance and 20% Area, further validating the need of a fully integrated DTCO.
具有不同设备和单元高度选项的N5节点的设计和技术协同优化
在本文中,我们提出了一种新颖的设计-技术协同优化(DTCO)框架,使PDK的生成和亚10nm技术节点的设计实现成为可能。该框架允许在设计层面研究不同技术选项的影响,并使用有效的设计功率,性能和面积(PPA)来决定正确的技术选项。设计实现流程具有IR-drop感知,允许针对不同设备/单元选项集成优化的电力输送网络(PDN)。使用类似n5的技术节点假设(接触poly和金属化间距为42和32nm),我们为不同的器件(finFET, 2和3纳米线)和标准单元选项(3,2或1鳍和7.5或6轨单元高度)生成数字pdk。不同的pdk已被用于实现和表征线主导电路。我们的研究表明,设计PDN/ ir下降感知是完成10nm以下节点的DTCO方法的基础。使用我们专门的设计方法,我们达到了2.5% VDD的ir下降目标(在最低的金属层上),同时最大限度地减少了PDN引起的区域退化。此外,我们证明了这种优化的PDN是强制性的,当从7.5到6轨单元高度移动时,可以实现20%的面积增益。最后,我们表明,不同器件选项的影响范围为15%的功率,2X的性能和20%的面积,进一步验证了完全集成的DTCO的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信