vrAIn

J. Ayala-Romero, Andres Garcia-Saavedra, M. Gramaglia, Xavier Costa-Pérez, Albert Banchs, J. J. Alcaraz
{"title":"vrAIn","authors":"J. Ayala-Romero, Andres Garcia-Saavedra, M. Gramaglia, Xavier Costa-Pérez, Albert Banchs, J. J. Alcaraz","doi":"10.1145/3300061.3345431","DOIUrl":null,"url":null,"abstract":"The virtualization of radio access networks (vRAN) is the last milestone in the NFV revolution. However, the complex dependencies between computing and radio resources make vRAN resource control particularly daunting. We present vrAIn, a dynamic resource controller for vRANs based on deep reinforcement learning. First, we use an autoencoder to project high-dimensional context data (traffic and signal quality patterns) into a latent representation. Then, we use a deep deterministic policy gradient (DDPG) algorithm based on an actor-critic neural network structure and a classifier to map (encoded) contexts into resource control decisions. We have implemented vrAIn using an open-source LTE stack over different platforms. Our results show that vrAIn successfully derives appropriate compute and radio control actions irrespective of the platform and context: (i) it provides savings in computational capacity of up to 30% over CPU-unaware methods; (ii) it improves the probability of meeting QoS targets by 25% over static allocation policies using similar CPU resources in average; (iii) upon CPU capacity shortage, it improves throughput performance by 25% over state-of-the-art schemes; and (iv) it performs close to optimal policies resulting from an offline oracle. To the best of our knowledge, this is the first work that thoroughly studies the computational behavior of vRANs, and the first approach to a model-free solution that does not need to assume any particular vRAN platform or system conditions.","PeriodicalId":223523,"journal":{"name":"The 25th Annual International Conference on Mobile Computing and Networking","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 25th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3300061.3345431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

The virtualization of radio access networks (vRAN) is the last milestone in the NFV revolution. However, the complex dependencies between computing and radio resources make vRAN resource control particularly daunting. We present vrAIn, a dynamic resource controller for vRANs based on deep reinforcement learning. First, we use an autoencoder to project high-dimensional context data (traffic and signal quality patterns) into a latent representation. Then, we use a deep deterministic policy gradient (DDPG) algorithm based on an actor-critic neural network structure and a classifier to map (encoded) contexts into resource control decisions. We have implemented vrAIn using an open-source LTE stack over different platforms. Our results show that vrAIn successfully derives appropriate compute and radio control actions irrespective of the platform and context: (i) it provides savings in computational capacity of up to 30% over CPU-unaware methods; (ii) it improves the probability of meeting QoS targets by 25% over static allocation policies using similar CPU resources in average; (iii) upon CPU capacity shortage, it improves throughput performance by 25% over state-of-the-art schemes; and (iv) it performs close to optimal policies resulting from an offline oracle. To the best of our knowledge, this is the first work that thoroughly studies the computational behavior of vRANs, and the first approach to a model-free solution that does not need to assume any particular vRAN platform or system conditions.
弗兰
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信