Dislocation Plasticity and Detwinning Under Thermal Stresses in Nanotwinned Ag Thin Films

Maya K. Kini, C. Merola, B. Breitbach, Dennis Klapproth, B. Philippi, Jean-Baptiste Molin, C. Kirchlechner, G. Dehm
{"title":"Dislocation Plasticity and Detwinning Under Thermal Stresses in Nanotwinned Ag Thin Films","authors":"Maya K. Kini, C. Merola, B. Breitbach, Dennis Klapproth, B. Philippi, Jean-Baptiste Molin, C. Kirchlechner, G. Dehm","doi":"10.2139/ssrn.3591844","DOIUrl":null,"url":null,"abstract":"Abstract Wafer curvature measurements reported in literature for polycrystalline (often textured) and epitaxial fcc metal thin films on hard substrates show a characteristic “signature” in the stress-temperature evolution for either type of films. While epitaxial films reveal characteristic elastic – ideal plastic deformation with no dislocation storage and highly repeatable cycles, polycrystalline films show considerable hardening upon cooling in addition to the relaxation by diffusional creep at elevated temperatures. In the present study, we study the deformation characteristics of an electron beam deposited epitaxial nanotwinned Ag on Si (111) substrate. The twin spacing λ of the nanotwinned Ag is controlled by suitable heat treatment and the “signature” thermomechanical deformation curves by wafer curvature measurements are recorded for twin spacings varying from 20 nm to 1 μm. Further, deformation is compared to other small scale deformation studies on fcc metals such as epitaxial bicrystal films, bicrystal micropillars containing a coherent twin boundary and nanotwinned micropillars.","PeriodicalId":337638,"journal":{"name":"EngRN: Materials in Energy (Topic)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EngRN: Materials in Energy (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3591844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Wafer curvature measurements reported in literature for polycrystalline (often textured) and epitaxial fcc metal thin films on hard substrates show a characteristic “signature” in the stress-temperature evolution for either type of films. While epitaxial films reveal characteristic elastic – ideal plastic deformation with no dislocation storage and highly repeatable cycles, polycrystalline films show considerable hardening upon cooling in addition to the relaxation by diffusional creep at elevated temperatures. In the present study, we study the deformation characteristics of an electron beam deposited epitaxial nanotwinned Ag on Si (111) substrate. The twin spacing λ of the nanotwinned Ag is controlled by suitable heat treatment and the “signature” thermomechanical deformation curves by wafer curvature measurements are recorded for twin spacings varying from 20 nm to 1 μm. Further, deformation is compared to other small scale deformation studies on fcc metals such as epitaxial bicrystal films, bicrystal micropillars containing a coherent twin boundary and nanotwinned micropillars.
热应力作用下纳米银薄膜的位错塑性和去孪晶
文献中对硬衬底上的多晶(通常是纹理)和外延fcc金属薄膜的晶圆曲率测量表明,这两种类型的薄膜在应力-温度演化中都有一个特征“特征”。外延薄膜表现出典型的弹性-理想塑性变形,没有位错储存和高度可重复的循环,而多晶薄膜在冷却时除了在高温下扩散蠕变而松弛外,还表现出相当大的硬化。在本研究中,我们研究了电子束沉积在Si(111)衬底上的外延纳米孪晶银的变形特性。通过适当的热处理控制银的孪晶间距λ,并通过晶圆曲率测量记录了孪晶间距在20 nm ~ 1 μm范围内的“特征”热力学变形曲线。此外,还将变形与fcc金属的其他小尺度变形研究进行了比较,如外延双晶薄膜、含有相干孪晶边界的双晶微柱和纳米孪晶微柱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信