{"title":"Independence-Based MAP for Markov Networks Structure Discovery","authors":"F. Bromberg, F. Schlüter, A. Edera","doi":"10.1109/ICTAI.2011.81","DOIUrl":null,"url":null,"abstract":"This work presents IBMAP, an approach for robust learning of Markov network structures from data, together with IBMAP-HC, an efficient instantiation of the approach. Existing Score-Based (SB) and Independence-Based (IB) approaches must make concessions either on robustness or efficiency. IBMAP-HC improves robustness efficiently through an IB-SB hybrid approach based on the probabilistic Maximum-A-Posteriori (MAP) technique, and the IB-score, a tractable expression for computing posterior probabilities of Markov network structures. Performance is first tested against IB and SB competitors on synthetic datasets. Against IB competitors (GSMN algorithm and a version of the HHC algorithm adapted here for Markov networks discovery), IBMAP-HC showed reductions in edges Hamming distance with same order running times. Against SB competitors, both IBMAP-HC and our adaptation of HHC produced comparable Hamming distances, but with running times orders of magnitude faster. We also evaluated IBMAP-HC in a realistic, challenging test-bed: EDAs, evolutionary algorithms for optimization that estimate a distribution on each generation. Using IBMAP-HC to estimate distributions, EDAs converged to the optimum faster in all benchmark functions considered, reducing required fitness evaluations by up to 80%.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This work presents IBMAP, an approach for robust learning of Markov network structures from data, together with IBMAP-HC, an efficient instantiation of the approach. Existing Score-Based (SB) and Independence-Based (IB) approaches must make concessions either on robustness or efficiency. IBMAP-HC improves robustness efficiently through an IB-SB hybrid approach based on the probabilistic Maximum-A-Posteriori (MAP) technique, and the IB-score, a tractable expression for computing posterior probabilities of Markov network structures. Performance is first tested against IB and SB competitors on synthetic datasets. Against IB competitors (GSMN algorithm and a version of the HHC algorithm adapted here for Markov networks discovery), IBMAP-HC showed reductions in edges Hamming distance with same order running times. Against SB competitors, both IBMAP-HC and our adaptation of HHC produced comparable Hamming distances, but with running times orders of magnitude faster. We also evaluated IBMAP-HC in a realistic, challenging test-bed: EDAs, evolutionary algorithms for optimization that estimate a distribution on each generation. Using IBMAP-HC to estimate distributions, EDAs converged to the optimum faster in all benchmark functions considered, reducing required fitness evaluations by up to 80%.