An Expectation-Maximization-based approach to the relative grid-locking problem

S. Fortunati, F. Gini, M. Greco, A. Farina, A. Graziano, S. Giompapa
{"title":"An Expectation-Maximization-based approach to the relative grid-locking problem","authors":"S. Fortunati, F. Gini, M. Greco, A. Farina, A. Graziano, S. Giompapa","doi":"10.1109/ISSPIT.2011.6151614","DOIUrl":null,"url":null,"abstract":"An important prerequisite for successful multisensory integration is that the data from the reporting sensors are transformed to a common reference frame free of systematic or registration bias errors. If not properly corrected, the registration errors can seriously degrade the global surveillance system performance. The relative sensor registration (or grid-locking) process aligns remote data to local data under the assumption that the local data are bias free and that all biases reside with the remote sensor. In this paper, we take into account all registration errors involved in the grid-locking problem. An EM-based estimator of these bias terms is derived and its statistical performance compared to the hybrid Cramér-Rao lower bound (HCRLB).","PeriodicalId":288042,"journal":{"name":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2011.6151614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

An important prerequisite for successful multisensory integration is that the data from the reporting sensors are transformed to a common reference frame free of systematic or registration bias errors. If not properly corrected, the registration errors can seriously degrade the global surveillance system performance. The relative sensor registration (or grid-locking) process aligns remote data to local data under the assumption that the local data are bias free and that all biases reside with the remote sensor. In this paper, we take into account all registration errors involved in the grid-locking problem. An EM-based estimator of these bias terms is derived and its statistical performance compared to the hybrid Cramér-Rao lower bound (HCRLB).
基于期望最大化的相对电网锁定问题研究
成功的多感觉整合的一个重要先决条件是来自报告传感器的数据被转换到一个没有系统或配准偏差误差的共同参考框架。如果不加以纠正,配准误差会严重降低全球监测系统的性能。相对传感器配准(或网格锁定)过程将远程数据与本地数据对齐,假设本地数据没有偏差,并且所有偏差都存在于远程传感器中。在本文中,我们考虑了网格锁定问题中涉及的所有配准误差。推导了一种基于em的偏置项估计器,并将其统计性能与混合cram - rao下界(HCRLB)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信