Autoencoder Evaluation and Hyper-Parameter Tuning in an Unsupervised Setting

Ellie Ordway-West, P. Parveen, Austin Henslee
{"title":"Autoencoder Evaluation and Hyper-Parameter Tuning in an Unsupervised Setting","authors":"Ellie Ordway-West, P. Parveen, Austin Henslee","doi":"10.1109/BigDataCongress.2018.00034","DOIUrl":null,"url":null,"abstract":"This paper aims to introduce a new methodology for evaluating autoencoder performance and to shorten time spent on heuristic analysis during hyper-parameter tuning. Existing methodologies for evaluating hyper-parameter tuning focus on finding known anomalies in a labeled set or minimizing the average per row reconstruction error as a method of model selection. This paper focuses on anomaly detection in a completely unsupervised setting, where labels are not known during model training or evaluation. This approach uses the approximate Full Width Half Max (FWHM) of the histogram of the per row reconstruction error in conjunction with the average per row reconstruction error and the number of anomalies found to define a new method of model selection that aims to maximize the FWHM while minimizing the average per row reconstruction error. This methodology simplifies and speeds up model evaluation by presenting model results in an intuitive manner and simplifies the heuristic analysis needed to determine the \"best\" model.","PeriodicalId":177250,"journal":{"name":"2018 IEEE International Congress on Big Data (BigData Congress)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2018.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper aims to introduce a new methodology for evaluating autoencoder performance and to shorten time spent on heuristic analysis during hyper-parameter tuning. Existing methodologies for evaluating hyper-parameter tuning focus on finding known anomalies in a labeled set or minimizing the average per row reconstruction error as a method of model selection. This paper focuses on anomaly detection in a completely unsupervised setting, where labels are not known during model training or evaluation. This approach uses the approximate Full Width Half Max (FWHM) of the histogram of the per row reconstruction error in conjunction with the average per row reconstruction error and the number of anomalies found to define a new method of model selection that aims to maximize the FWHM while minimizing the average per row reconstruction error. This methodology simplifies and speeds up model evaluation by presenting model results in an intuitive manner and simplifies the heuristic analysis needed to determine the "best" model.
无监督设置下的自编码器评估和超参数调整
本文旨在介绍一种评估自编码器性能的新方法,并缩短在超参数调谐过程中用于启发式分析的时间。评估超参数调优的现有方法侧重于在标记集中发现已知异常或最小化平均每行重建误差作为模型选择的方法。本文关注的是在完全无监督环境下的异常检测,在模型训练或评估过程中,标签是未知的。该方法利用每行重建误差直方图的近似全宽半最大值(FWHM),结合平均每行重建误差和发现的异常数量,定义了一种新的模型选择方法,旨在最大化全宽半最大值,同时最小化平均每行重建误差。该方法通过以直观的方式呈现模型结果,简化并加速了模型评估,并简化了确定“最佳”模型所需的启发式分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信