{"title":"Performance of a JTIDS-type waveform with noise-normalization combining in pulsed-noise interference","authors":"C. Kao, C. Robertson","doi":"10.1109/MILCOM.2010.5680222","DOIUrl":null,"url":null,"abstract":"The Joint Tactical Information Distribution System (JTIDS) is the communication terminal of Link-16. When the double-pulse structure is chosen to transmit the Link-16 data, JTIDS is a hybrid direct sequence/fast frequency-hopping spread spectrum system with a sequential diversity of two. To minimize the effect of pulsed-noise interference (PNI), a noise-normalized diversity combining MSK chip demodulator is assumed in the JTIDS receiver. The symbol error rate (SER) performance of a coherently detected JTIDS-type waveform for the double-pulse structure with noise-normalization combining (NNC) in PNI is investigated in this paper. To facilitate the evaluation, perfect frequency de-hopping, sequence synchronization, chip synchronization, and 32-chip sequence descrambling are assumed. Furthermore, maximum-likelihood chip detection is assumed rather than maximum-likelihood chip-sequence detection since the former represents a more practical assumption for a JTIDS signal. The results obtained with NNC are compared to those without NNC, as well as to those with perfect side information. The results show that for a coherently detected JTIDS-type waveform with the double-pulse structure, NNC effectively mitigates the system degradation caused by PNI.","PeriodicalId":330937,"journal":{"name":"2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2010.5680222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The Joint Tactical Information Distribution System (JTIDS) is the communication terminal of Link-16. When the double-pulse structure is chosen to transmit the Link-16 data, JTIDS is a hybrid direct sequence/fast frequency-hopping spread spectrum system with a sequential diversity of two. To minimize the effect of pulsed-noise interference (PNI), a noise-normalized diversity combining MSK chip demodulator is assumed in the JTIDS receiver. The symbol error rate (SER) performance of a coherently detected JTIDS-type waveform for the double-pulse structure with noise-normalization combining (NNC) in PNI is investigated in this paper. To facilitate the evaluation, perfect frequency de-hopping, sequence synchronization, chip synchronization, and 32-chip sequence descrambling are assumed. Furthermore, maximum-likelihood chip detection is assumed rather than maximum-likelihood chip-sequence detection since the former represents a more practical assumption for a JTIDS signal. The results obtained with NNC are compared to those without NNC, as well as to those with perfect side information. The results show that for a coherently detected JTIDS-type waveform with the double-pulse structure, NNC effectively mitigates the system degradation caused by PNI.