Robust face recognition of inferior quality images using Local Gabor Phase Quantization

Shubhobrata Bhattacharya, A. Dasgupta, A. Routray
{"title":"Robust face recognition of inferior quality images using Local Gabor Phase Quantization","authors":"Shubhobrata Bhattacharya, A. Dasgupta, A. Routray","doi":"10.1109/TECHSYM.2016.7872699","DOIUrl":null,"url":null,"abstract":"Inferior quality images often pose a major challenge in the domain of face recognition. This paper presents a scheme for face recognition which can not only work efficiently on standard databases but also on inferior quality images having low and medium resolutions. The proposed framework uses Local Gabor Phase Quantizers (LGPQ) to compensate for the quality of the images. In this framework, a probe face image is taken as input, which undergoes preprocessing for photometric corrections. The preprocessed image undergoes Gabor transformation, where Local Phase Quantizers are applied independently on each frame to obtain the signature histograms. These histograms are finally matched with the gallery image weights using Principal Component Analysis (PCA). The framework has been tested on images selected from the CMU, AR, Yale databases.","PeriodicalId":403350,"journal":{"name":"2016 IEEE Students’ Technology Symposium (TechSym)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Students’ Technology Symposium (TechSym)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TECHSYM.2016.7872699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Inferior quality images often pose a major challenge in the domain of face recognition. This paper presents a scheme for face recognition which can not only work efficiently on standard databases but also on inferior quality images having low and medium resolutions. The proposed framework uses Local Gabor Phase Quantizers (LGPQ) to compensate for the quality of the images. In this framework, a probe face image is taken as input, which undergoes preprocessing for photometric corrections. The preprocessed image undergoes Gabor transformation, where Local Phase Quantizers are applied independently on each frame to obtain the signature histograms. These histograms are finally matched with the gallery image weights using Principal Component Analysis (PCA). The framework has been tested on images selected from the CMU, AR, Yale databases.
基于局部Gabor相位量化的劣质图像鲁棒人脸识别
劣质图像是人脸识别领域的一大难题。本文提出了一种既能在标准数据库上高效工作,又能在中低分辨率的劣质图像上高效工作的人脸识别方案。提出的框架使用局部Gabor相位量化(LGPQ)来补偿图像的质量。在该框架中,将探测人脸图像作为输入,对其进行光度校正预处理。预处理后的图像进行Gabor变换,在每一帧上独立应用局部相位量化器获得签名直方图。最后使用主成分分析(PCA)将这些直方图与图库图像的权重进行匹配。该框架已在从CMU, AR,耶鲁数据库中选择的图像上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信