$H_{\infty}$ memory observer design for vehicle suspension state estimation and unknown road reconstruction

Gang Wang, M. Chadli, S. Mammar
{"title":"$H_{\\infty}$ memory observer design for vehicle suspension state estimation and unknown road reconstruction","authors":"Gang Wang, M. Chadli, S. Mammar","doi":"10.1109/MED48518.2020.9183121","DOIUrl":null,"url":null,"abstract":"This brief is concerned with the state estimation problem for a vehicle suspension subjected to unknown road input. Limited by installation space and number of sensors, the measurable states are limited. To estimate the entire suspension states and road profile simultaneously, an $H_{\\infty}$ memory observer (HMO) is developed. Unlike the traditional unknown input observer (UIO) designed to the suspension system, the proposed HMO takes advantage of the memory outputs. Disturbance decoupling and $H_{\\infty}$ attenuation techniques are used in the design. Furthermore, a sufficient condition based on LMI framework is provided to find the observer gains. The simulation results show that the HMO is efficient and the estimated values are very close to the real ones.","PeriodicalId":418518,"journal":{"name":"2020 28th Mediterranean Conference on Control and Automation (MED)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED48518.2020.9183121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This brief is concerned with the state estimation problem for a vehicle suspension subjected to unknown road input. Limited by installation space and number of sensors, the measurable states are limited. To estimate the entire suspension states and road profile simultaneously, an $H_{\infty}$ memory observer (HMO) is developed. Unlike the traditional unknown input observer (UIO) designed to the suspension system, the proposed HMO takes advantage of the memory outputs. Disturbance decoupling and $H_{\infty}$ attenuation techniques are used in the design. Furthermore, a sufficient condition based on LMI framework is provided to find the observer gains. The simulation results show that the HMO is efficient and the estimated values are very close to the real ones.
$H_{\infty}$ 基于记忆观测器的车辆悬架状态估计与未知道路重构
本文主要研究在未知道路输入下车辆悬架的状态估计问题。受传感器安装空间和数量的限制,可测量的状态是有限的。为了同时估计整个悬架状态和道路轮廓,设计了一个$H_{\infty}$记忆观测器。与传统悬架系统的未知输入观测器(UIO)不同,所提出的HMO利用了记忆输出。在设计中采用了干扰解耦和$H_{\infty}$衰减技术。在此基础上,给出了基于LMI框架的观测器增益求解的充分条件。仿真结果表明,该方法是有效的,其估计值与实际值非常接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信