M. Kemal Bayrakçeken, M. Atıf Çay, A. Barkana, Özetçe Ortak, Yöney Yaklaşımı, Giriş
{"title":"Word Spotting Using Common Vector Approach","authors":"M. Kemal Bayrakçeken, M. Atıf Çay, A. Barkana, Özetçe Ortak, Yöney Yaklaşımı, Giriş","doi":"10.1109/SIU.2007.4298587","DOIUrl":null,"url":null,"abstract":"Common vector approach (CVA) is a subspace method and it aims to find a unique vector which contains the common features for each class. CVA was successfully applied to pattern recognition experiments like isolated word recognition, image recognition and multi-class cases. It is aimed here to set out a novel application of CVA, word spotting in continuous speech. Two different recordings containing ten keywords were used for training and testing. A Hundred percent successful recognition was achieved with the aid of a pre-calculated decision threshold. However, the aim was to develop an algorithm independent of databases so a method was used to calculate threshold from training set. Again a hundred percent recognition was obtained on test set. The next step is to devise a totally autonomous recognition system and obtain more experimental data on universal databases.","PeriodicalId":315147,"journal":{"name":"2007 IEEE 15th Signal Processing and Communications Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 15th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2007.4298587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Common vector approach (CVA) is a subspace method and it aims to find a unique vector which contains the common features for each class. CVA was successfully applied to pattern recognition experiments like isolated word recognition, image recognition and multi-class cases. It is aimed here to set out a novel application of CVA, word spotting in continuous speech. Two different recordings containing ten keywords were used for training and testing. A Hundred percent successful recognition was achieved with the aid of a pre-calculated decision threshold. However, the aim was to develop an algorithm independent of databases so a method was used to calculate threshold from training set. Again a hundred percent recognition was obtained on test set. The next step is to devise a totally autonomous recognition system and obtain more experimental data on universal databases.