Thomas B Freeman, Kaloki L. Nabutola, D. Spitzer, P. Currier, S. Boetcher
{"title":"3D-Printed PCM/HDPE Composites for Battery Thermal Management","authors":"Thomas B Freeman, Kaloki L. Nabutola, D. Spitzer, P. Currier, S. Boetcher","doi":"10.1115/IMECE2018-86081","DOIUrl":null,"url":null,"abstract":"Phase-change materials (PCMs) are a useful alternative to more traditional methods of thermal management of Li-ion batteries in electric or hybrid-electric vehicles. PCMs are materials which absorb large amounts of latent heat and undergo solid-to-liquid phase change at near-constant temperature. The goal of the research is to experimentally investigate the thermal properties of a novel shape-stabilized PCM/HDPE composite extruded filament. The extruded filament can then be used in a 3D printer for custom PCM/HDPE shapes. The PCM used in the study is PureTemp PCM 42, which is an organic-based material that melts around 42° C. Four PCM/HDPE mixtures were investigated (all percentages by mass): 20/80, 30/70, 40/60, and 50/50. Preliminary findings include differential scanning calorimeter (DSC) measurements of melting temperature and latent heat as well as scanning electron microscope (SEM) pictures of filament composition.","PeriodicalId":307820,"journal":{"name":"Volume 8B: Heat Transfer and Thermal Engineering","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8B: Heat Transfer and Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Phase-change materials (PCMs) are a useful alternative to more traditional methods of thermal management of Li-ion batteries in electric or hybrid-electric vehicles. PCMs are materials which absorb large amounts of latent heat and undergo solid-to-liquid phase change at near-constant temperature. The goal of the research is to experimentally investigate the thermal properties of a novel shape-stabilized PCM/HDPE composite extruded filament. The extruded filament can then be used in a 3D printer for custom PCM/HDPE shapes. The PCM used in the study is PureTemp PCM 42, which is an organic-based material that melts around 42° C. Four PCM/HDPE mixtures were investigated (all percentages by mass): 20/80, 30/70, 40/60, and 50/50. Preliminary findings include differential scanning calorimeter (DSC) measurements of melting temperature and latent heat as well as scanning electron microscope (SEM) pictures of filament composition.