Adaptive FSK decoding with an artificial neural network

P.V. Hayes, J.R. Uhey, S. Sayegh
{"title":"Adaptive FSK decoding with an artificial neural network","authors":"P.V. Hayes, J.R. Uhey, S. Sayegh","doi":"10.1109/TCC.1994.472089","DOIUrl":null,"url":null,"abstract":"We describe an empirical study of the capability of an artificial neural network (ANN) to decode a frequency shift key (FSK) signal. An algorithm for generating a minimal, yet comprehensive ANN training data set is discussed. The FSK signal is over sampled. The samples are presented to the ANN as a window in time. The window is one symbol wide. After initial training, white Gaussian noise is added to the samples and the ANN's ability to generalize is tested. We then conduct additional training, using the noisy data, to test the ANN's ability to adaptively recover. Simulation results are reported.<<ETX>>","PeriodicalId":206310,"journal":{"name":"Proceedings of TCC'94 - Tactical Communications Conference","volume":"384 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of TCC'94 - Tactical Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCC.1994.472089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We describe an empirical study of the capability of an artificial neural network (ANN) to decode a frequency shift key (FSK) signal. An algorithm for generating a minimal, yet comprehensive ANN training data set is discussed. The FSK signal is over sampled. The samples are presented to the ANN as a window in time. The window is one symbol wide. After initial training, white Gaussian noise is added to the samples and the ANN's ability to generalize is tested. We then conduct additional training, using the noisy data, to test the ANN's ability to adaptively recover. Simulation results are reported.<>
基于人工神经网络的自适应FSK译码
我们描述了人工神经网络(ANN)解码频移键(FSK)信号的能力的实证研究。讨论了一种生成最小而全面的人工神经网络训练数据集的算法。FSK信号过采样。这些样本作为时间窗口呈现给人工神经网络。窗口是一个符号宽。初始训练后,在样本中加入高斯白噪声,测试人工神经网络的泛化能力。然后,我们使用有噪声的数据进行额外的训练,以测试人工神经网络的自适应恢复能力。并报告了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信