Marcia D. McMillan, R. Will, W. Ampomah, R. Balch, P. Czoski
{"title":"Coupled Hydrodynamic-Geomechanical Modelling of CO2-WAG Field Development at Farnsworth Unit: A Case Study","authors":"Marcia D. McMillan, R. Will, W. Ampomah, R. Balch, P. Czoski","doi":"10.2118/195484-MS","DOIUrl":null,"url":null,"abstract":"\n The SWP project is located in a mature waterflood undergoing conversion to CO2-WAG operations at Farnsworth, Texas, USA. Utilized CO2 is anthropogenic, sourced from a fertilizer and an ethanol plant. Major project goals are optimizing the storage/production balance, ensuring storage permanence, and developing best practices for CCUS.\n This paper provides a review of work performed toward development of a 3D coupled Mechanical Earth Model (MEM) for use in assessment of caprock integrity, fault reactivation potential, and evaluation of stress dependent permeability in reservoir forecasting. Mechanical property estimates computed from geophysical logs at selected wellbores were integrated with 3D seismic elastic inversion products to create a 3D \"static\" mechanical property model sharing the same geological framework as the existing reservoir simulation model including 3 major faults. Stresses in the MEM were initialized from wellbore stress estimates and reservoir simulation pore pressures. One way and two way coupled simulations were performed using a compositional hydrodynamic flow model and geomechanical solvers.\n Coupled simulations were performed on history matched primary, secondary (waterflood), and tertiary (CO2 WAG) recovery periods, as well as an optimized WAG prediction period. These simulations suggest that the field has been operating at conditions which are not conducive to either caprock failure or fault reactivation. Two way coupled simulations were performed in which permeability was periodically updated as a function of volumetric strain using the Kozeny-Carmen porosity-permeability relationship. These simulations illustrate the importance of frequent permeability updating when recovery scenarios result in large pressure changes such as in field re-pressurization through waterflood after a long primary depletion recovery period. Conversely, production forecasting results are less sensitive to permeability update frequency when pressure cycles are short and shallow as in WAG cycles.\n This paper describes initial work on development of a mechanical earth model for use in assessment of geomechanical risks associated with CCUS operations at FWU. The emphasis of this work is on integration of available geomechanical data for creation of the static mechanical property model. Preliminary coupled hydro-mechanical simulations are presented to illustrate some of the key diagnostic output from coupled simulations which will be used in later work for in depth evaluation of specific risk factors such as induced seismicity and caprock integrity.","PeriodicalId":103248,"journal":{"name":"Day 4 Thu, June 06, 2019","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, June 06, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/195484-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The SWP project is located in a mature waterflood undergoing conversion to CO2-WAG operations at Farnsworth, Texas, USA. Utilized CO2 is anthropogenic, sourced from a fertilizer and an ethanol plant. Major project goals are optimizing the storage/production balance, ensuring storage permanence, and developing best practices for CCUS.
This paper provides a review of work performed toward development of a 3D coupled Mechanical Earth Model (MEM) for use in assessment of caprock integrity, fault reactivation potential, and evaluation of stress dependent permeability in reservoir forecasting. Mechanical property estimates computed from geophysical logs at selected wellbores were integrated with 3D seismic elastic inversion products to create a 3D "static" mechanical property model sharing the same geological framework as the existing reservoir simulation model including 3 major faults. Stresses in the MEM were initialized from wellbore stress estimates and reservoir simulation pore pressures. One way and two way coupled simulations were performed using a compositional hydrodynamic flow model and geomechanical solvers.
Coupled simulations were performed on history matched primary, secondary (waterflood), and tertiary (CO2 WAG) recovery periods, as well as an optimized WAG prediction period. These simulations suggest that the field has been operating at conditions which are not conducive to either caprock failure or fault reactivation. Two way coupled simulations were performed in which permeability was periodically updated as a function of volumetric strain using the Kozeny-Carmen porosity-permeability relationship. These simulations illustrate the importance of frequent permeability updating when recovery scenarios result in large pressure changes such as in field re-pressurization through waterflood after a long primary depletion recovery period. Conversely, production forecasting results are less sensitive to permeability update frequency when pressure cycles are short and shallow as in WAG cycles.
This paper describes initial work on development of a mechanical earth model for use in assessment of geomechanical risks associated with CCUS operations at FWU. The emphasis of this work is on integration of available geomechanical data for creation of the static mechanical property model. Preliminary coupled hydro-mechanical simulations are presented to illustrate some of the key diagnostic output from coupled simulations which will be used in later work for in depth evaluation of specific risk factors such as induced seismicity and caprock integrity.