Semi-Automatic Generating Semantic Markup Webpage from Structured Data with Semantic Matching

D. Wardani, Masya Marshallia, A. Wijayanto, Haryono Setyadi
{"title":"Semi-Automatic Generating Semantic Markup Webpage from Structured Data with Semantic Matching","authors":"D. Wardani, Masya Marshallia, A. Wijayanto, Haryono Setyadi","doi":"10.1109/ICITEE56407.2022.9954103","DOIUrl":null,"url":null,"abstract":"Along with the development of the knowledge graph, it required more significant structured data to build it. Publishing massive structured data, such as relational databases, require substantial effort. Therefore, this work pro-poses a framework for semi-automatic generating structured data and creating a semantic matching algorithm for the table’s attributes and schema.org’s properties. The algorithm uses Wu Palmer Similarity (WUP) and WordNet as semantic similarity measurements. Although the obtained scores are still pretty fair, the whole framework runs well at 0.4285 for WUP+k and 0,3833 for WUP.","PeriodicalId":246279,"journal":{"name":"2022 14th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEE56407.2022.9954103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Along with the development of the knowledge graph, it required more significant structured data to build it. Publishing massive structured data, such as relational databases, require substantial effort. Therefore, this work pro-poses a framework for semi-automatic generating structured data and creating a semantic matching algorithm for the table’s attributes and schema.org’s properties. The algorithm uses Wu Palmer Similarity (WUP) and WordNet as semantic similarity measurements. Although the obtained scores are still pretty fair, the whole framework runs well at 0.4285 for WUP+k and 0,3833 for WUP.
基于语义匹配的结构化数据半自动生成语义标记网页
随着知识图谱的发展,需要更多重要的结构化数据来构建知识图谱。发布大量结构化数据(如关系数据库)需要大量的工作。因此,本工作提出了一个框架,用于半自动生成结构化数据,并为表的属性和schema.org的属性创建语义匹配算法。该算法使用WUP和WordNet作为语义相似度度量。虽然得到的分数仍然相当公平,但整个框架运行良好,WUP+k为0.4285,WUP为0.3833。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信